Home
Class 12
MATHS
(1)/(sqrt(x+1)+sqrtx)...

`(1)/(sqrt(x+1)+sqrtx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( f(x) = \frac{1}{\sqrt{x+1} + \sqrt{x}} \), we will follow these steps: ### Step 1: Rationalize the Denominator We start by rationalizing the denominator. We multiply the numerator and denominator by the conjugate of the denominator: \[ f(x) = \frac{1}{\sqrt{x+1} + \sqrt{x}} \cdot \frac{\sqrt{x+1} - \sqrt{x}}{\sqrt{x+1} - \sqrt{x}} = \frac{\sqrt{x+1} - \sqrt{x}}{(\sqrt{x+1})^2 - (\sqrt{x})^2} \] ### Step 2: Simplify the Denominator Now, we simplify the denominator using the difference of squares: \[ (\sqrt{x+1})^2 - (\sqrt{x})^2 = (x + 1) - x = 1 \] Thus, we have: \[ f(x) = \sqrt{x+1} - \sqrt{x} \] ### Step 3: Differentiate the Function Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(\sqrt{x+1}) - \frac{d}{dx}(\sqrt{x}) \] Using the derivative formula \( \frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \): \[ f'(x) = \frac{1}{2\sqrt{x+1}} \cdot 1 - \frac{1}{2\sqrt{x}} \cdot 1 \] This simplifies to: \[ f'(x) = \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x}} \] ### Step 4: Combine the Terms To combine these fractions, we find a common denominator: \[ f'(x) = \frac{\sqrt{x} - \sqrt{x+1}}{2\sqrt{x}\sqrt{x+1}} \] ### Final Answer Thus, the differential coefficient of the function \( f(x) = \frac{1}{\sqrt{x+1} + \sqrt{x}} \) is: \[ f'(x) = \frac{\sqrt{x} - \sqrt{x+1}}{2\sqrt{x}\sqrt{x+1}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

int_0^1 (dx)/(sqrt(1+x)-sqrtx)

If int_(0)^(1) (dx)/(sqrt(1+x)-sqrtx)= (k)/(3) then k= ….

int (1)/(sqrtx+ sqrt(x^(3)))dx= ….

int(1)/(sqrt(1+sqrtx))dx=

Integrate: (a) (3)/(2)sqrt3 (b) (3)/(2sqrtx) (c ) sqrtx+(1)/(sqrtx)

y = sqrt(1+sqrtx)

Evaluate: int_0^1 1/(sqrt(1+x)-sqrtx) dx

lim_(x rarr oo) (sqrt(x+1)-sqrtx)sqrtx

Evaluate int _(1) ^(2) (sqrtx)/( sqrt3 -x + sqrtx)dx