Home
Class 12
MATHS
e^(mx).cos n x...

`e^(mx).cos n x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( e^{mx} \cos(nx) \) with respect to \( x \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative of their product \( uv \) is given by: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-Step Solution: 1. **Identify the Functions**: Let: - \( u = e^{mx} \) - \( v = \cos(nx) \) 2. **Differentiate \( u \) and \( v \)**: - The derivative of \( u \) with respect to \( x \) is: \[ \frac{du}{dx} = \frac{d}{dx}(e^{mx}) = m e^{mx} \] - The derivative of \( v \) with respect to \( x \) is: \[ \frac{dv}{dx} = \frac{d}{dx}(\cos(nx)) = -n \sin(nx) \] 3. **Apply the Product Rule**: Now, applying the product rule: \[ \frac{d}{dx}(e^{mx} \cos(nx)) = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{d}{dx}(e^{mx} \cos(nx)) = e^{mx} (-n \sin(nx)) + \cos(nx) (m e^{mx}) \] 4. **Simplify the Expression**: Combine the terms: \[ = -n e^{mx} \sin(nx) + m e^{mx} \cos(nx) \] Factor out \( e^{mx} \): \[ = e^{mx} (m \cos(nx) - n \sin(nx)) \] ### Final Answer: Thus, the differential coefficient of the function \( e^{mx} \cos(nx) \) with respect to \( x \) is: \[ \frac{d}{dx}(e^{mx} \cos(nx)) = e^{mx} (m \cos(nx) - n \sin(nx)) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If f(x) = ((e^(mx)-1)sin mx)/(4x^(2)), x !=0 and f(0) = 9 ,is continuous at x = 0 , then m = ….

int e^(x)cos e^(x)dx

The differential equation of y= e^(2x) (A cos mx +B sin mx) is

lim_(x rarr0)(1-cos mx)/(1-cos nx), n!=0

lim_(x rarr0)(1-cos mx)/(1-cos nx),n!=0

If m ne n , m n in N then the value of int_(0)^(2pi) cos mx cos nx dx is

Given that n is odd and m is even integer. the value of int _(0) ^(x ) cos mx sin nxds is :

If lim_(x to 0) (1)/(x^(2)) (e^(2mx) = e^(x) - x) = (3)/(2) then the value of m is _____

if y=log(e^(2x)+sqrt(1+e^(4x))) and y_(1)sqrt(1+e^(4x))=me^(mx) then m=