Home
Class 12
MATHS
e^(-2x)sin 4 x...

`e^(-2x)sin 4 x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( y = e^{-2x} \sin(4x) \) with respect to \( x \), we will use the product rule of differentiation. ### Step-by-step Solution: 1. **Identify the Functions**: Let \( u = e^{-2x} \) and \( v = \sin(4x) \). 2. **Differentiate \( u \)**: To find \( \frac{du}{dx} \): \[ \frac{du}{dx} = \frac{d}{dx}(e^{-2x}) = e^{-2x} \cdot (-2) = -2e^{-2x} \] 3. **Differentiate \( v \)**: To find \( \frac{dv}{dx} \): \[ \frac{dv}{dx} = \frac{d}{dx}(\sin(4x)) = \cos(4x) \cdot 4 = 4\cos(4x) \] 4. **Apply the Product Rule**: The product rule states that: \[ \frac{d}{dx}(u \cdot v) = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx} \] Substituting the values we have: \[ \frac{dy}{dx} = e^{-2x} \cdot (4\cos(4x)) + \sin(4x) \cdot (-2e^{-2x}) \] 5. **Simplify the Expression**: \[ \frac{dy}{dx} = 4e^{-2x}\cos(4x) - 2e^{-2x}\sin(4x) \] 6. **Factor Out Common Terms**: We can factor out \( 2e^{-2x} \): \[ \frac{dy}{dx} = 2e^{-2x}(2\cos(4x) - \sin(4x)) \] ### Final Answer: Thus, the differential coefficient of the function \( y = e^{-2x} \sin(4x) \) with respect to \( x \) is: \[ \frac{dy}{dx} = 2e^{-2x}(2\cos(4x) - \sin(4x)) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

e^(2x) sin 3x

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

e^(3x).sin4x

int e^(2x) sin x dx

int e^(2x) sin x cos x dx

int e ^ (2x) ((sin4x-2) / (1-cos4x)) dx

(i) int e^(2x) ((1+sin2x)/(1+cos2x)) dx (ii) int e^(2x) ((sin4x-2)/(1-cos4x))

Delta (x) = det [[sin2x, e ^ (x) sin x + x cos x, sin x + x ^ (2) cos xcos x + sin x, e ^ (x) + x, 1 + x ^ ( 2) e ^ (x) cos x, e ^ (2) x, e ^ (x)]]

Delta (x) = det [[sin2x, e ^ (x) sin x + x cos x, sin x + x ^ (2) cos xcos x + sin x, e ^ (x) + x, 1 + x ^ ( 2) e ^ (x) cos x, e ^ (2) x, e ^ (x)]]