Home
Class 12
MATHS
sqrt("log"x)...

`sqrt("log"x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sqrt{\log x} \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the function We can express the square root in terms of a power: \[ y = (\log x)^{1/2} \] ### Step 2: Apply the chain rule To differentiate \( y \), we will use the chain rule. The chain rule states that if you have a composite function \( f(g(x)) \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{dy}{dg} \cdot \frac{dg}{dx} \] In our case, let \( g(x) = \log x \). Then, we have: \[ \frac{dy}{dg} = \frac{1}{2} g^{-\frac{1}{2}} = \frac{1}{2 (\log x)^{1/2}} \] ### Step 3: Differentiate \( g(x) \) Next, we need to find \( \frac{dg}{dx} \): \[ g(x) = \log x \implies \frac{dg}{dx} = \frac{1}{x} \] ### Step 4: Combine using the chain rule Now we can combine these results using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{dg} \cdot \frac{dg}{dx} = \frac{1}{2 (\log x)^{1/2}} \cdot \frac{1}{x} \] ### Step 5: Simplify the expression Thus, we have: \[ \frac{dy}{dx} = \frac{1}{2x \sqrt{\log x}} \] ### Final Result The derivative of \( y = \sqrt{\log x} \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{2x \sqrt{\log x}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

f(x)=cos^(-1)sqrt(log_(|x|)((|x|)/(x)))

The equation sqrt(1+log_(x) sqrt27) log_(3) x+1 = 0 has

Evaluate: int(sqrt(2+log x))/(x)dx

evaluate int(sqrt(2+log x))/(x)dx

int sqrt(x)(log x)^(2)dx

y=sqrt(log_(e)x+sqrt(log_(e)x+.........oo)) then (dy)/(dx) is

Find the value of x satisfying the equation,sqrt((log_(3)3sqrt(3)x+log_(x)3sqrt(3)x)*log_(3)x^(3))+sqrt(((log_(3)(3sqrt(x)))/(3)+(log_(x)(3sqrt(x)))/(3))*log_(3)x^(3))=2

f(x)=sqrt(log((3x-x^(2))/(x-1)))

int(sqrt((2+log x)))/(x)dx

If f(x)=sqrt(log_(2)((x)/(x^(2)-1))), then for what of