Home
Class 12
MATHS
(e^x+e^-x)/(e^x-e^(-x))...

`(e^x+e^-x)/(e^x-e^(-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{e^x + e^{-x}}{e^x - e^{-x}} \), we will use the quotient rule. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then its derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] ### Step 1: Identify \( u \) and \( v \) Let: - \( u = e^x + e^{-x} \) - \( v = e^x - e^{-x} \) ### Step 2: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. **Differentiate \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(e^x + e^{-x}) = e^x - e^{-x} \] 2. **Differentiate \( v \)**: \[ \frac{dv}{dx} = \frac{d}{dx}(e^x - e^{-x}) = e^x + e^{-x} \] ### Step 3: Apply the Quotient Rule Now, we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = \frac{(e^x - e^{-x})(e^x - e^{-x}) - (e^x + e^{-x})(e^x + e^{-x})}{(e^x - e^{-x})^2} \] ### Step 4: Simplify the Numerator Let's simplify the numerator: 1. **Expand the first term**: \[ (e^x - e^{-x})^2 = e^{2x} - 2 + e^{-2x} \] 2. **Expand the second term**: \[ (e^x + e^{-x})^2 = e^{2x} + 2 + e^{-2x} \] Now substituting back into the numerator: \[ e^{2x} - 2 + e^{-2x} - (e^{2x} + 2 + e^{-2x}) = e^{2x} - 2 + e^{-2x} - e^{2x} - 2 - e^{-2x} \] This simplifies to: \[ -4 \] ### Step 5: Write the Final Derivative Thus, we have: \[ \frac{dy}{dx} = \frac{-4}{(e^x - e^{-x})^2} \] ### Final Answer The derivative of \( y = \frac{e^x + e^{-x}}{e^x - e^{-x}} \) is: \[ \frac{dy}{dx} = \frac{-4}{(e^x - e^{-x})^2} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

int(4e^x+6e^(-x))/(9e^x-4e^(-x))dx=A x+Blog(9e^(2x)-4)+C ,t h e n A=_________ _, B=_________, C=___________

int(2)/((e^(x)+e^(-x))^(2))dx(e^(-x))/(e^(x)+e^(-x))+C(b)-(1)/(e^(x)+e^(-x))+C(c)(-1)/((e^(x)+1)^(2))+C(d)(1)/(e^(x)-e^(-x))+C

int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx

If int(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B log(9e^(2x)-4)+C , then |4A|=

int_( then )^( If )(4e^(x)+6e^(-x))/(9e^(x)-4e^(-x))dx=Ax+B ln(9e^(2x)-4)+C

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then