Home
Class 12
MATHS
logs(sqrt(x)+1/sqrt(x))...

`logs(sqrt(x)+1/sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \log\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Rewrite the function First, we express \( \sqrt{x} \) in terms of exponents: \[ f(x) = \log\left(x^{1/2} + x^{-1/2}\right) \] ### Step 2: Differentiate using the chain rule Using the chain rule, the derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). Here, \( u = \sqrt{x} + \frac{1}{\sqrt{x}} \): \[ f'(x) = \frac{1}{\sqrt{x} + \frac{1}{\sqrt{x}}} \cdot \frac{d}{dx}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) \] ### Step 3: Differentiate \( u \) Now, we need to differentiate \( u \): \[ \frac{d}{dx}\left(\sqrt{x}\right) = \frac{1}{2\sqrt{x}}, \quad \text{and} \quad \frac{d}{dx}\left(\frac{1}{\sqrt{x}}\right) = -\frac{1}{2}x^{-3/2} = -\frac{1}{2\sqrt{x^3}} \] Thus, \[ \frac{du}{dx} = \frac{1}{2\sqrt{x}} - \frac{1}{2\sqrt{x^3}} = \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}} = \frac{1}{2\sqrt{x}} \left(1 - \frac{1}{x}\right) \] ### Step 4: Substitute back into the derivative Now, substituting \( \frac{du}{dx} \) back into the derivative: \[ f'(x) = \frac{1}{\sqrt{x} + \frac{1}{\sqrt{x}}} \cdot \frac{1}{2\sqrt{x}} \left(1 - \frac{1}{x}\right) \] ### Step 5: Simplify the expression We can simplify \( f'(x) \): \[ f'(x) = \frac{1}{\sqrt{x} + \frac{1}{\sqrt{x}}} \cdot \frac{1}{2\sqrt{x}} \cdot \frac{x - 1}{x} \] The term \( \sqrt{x} + \frac{1}{\sqrt{x}} \) can be rewritten as \( \frac{x + 1}{\sqrt{x}} \): \[ f'(x) = \frac{1}{\frac{x + 1}{\sqrt{x}}} \cdot \frac{1}{2\sqrt{x}} \cdot \frac{x - 1}{x} \] This simplifies to: \[ f'(x) = \frac{\sqrt{x}}{x + 1} \cdot \frac{1}{2\sqrt{x}} \cdot \frac{x - 1}{x} = \frac{x - 1}{2x(x + 1)} \] ### Final Result Thus, the derivative of the function is: \[ f'(x) = \frac{x - 1}{2x(x + 1)} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x)))^(2), then , x(x+1)^(2)y_(2)+(x+1)^(2)y_(1) is

int_( then )^( If )sqrt((1-x)/(1+x))(dx)/(x)=log((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))+2f(x)+C

int_(0)^(1)log(sqrt(1-x)+sqrt(1+x))dx equals:

The value of int log(sqrt(1-x)+sqrt(1+x))dx, is equal to

Differentiate the following : log((sqrt(x+1)+1)/(sqrt(x+1)-1))

int_(, then )^( If )log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+B sin^(-1)x+C

int_0^1 log(sqrt(1+x)+sqrt(1-x))dx= (A) 1/2(log2-pi/2+1) (B) 1/2(log2+pi/2+1) (C) 1/2(log2+pi/2-1) (D) none of these

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=