Home
Class 12
MATHS
log (sec 2x +tan 2 x)...

log (sec 2x +tan 2 x)

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \log(\sec(2x) + \tan(2x)) \) with respect to \( x \), we will follow these steps: ### Step 1: Differentiate the logarithmic function Using the chain rule, the derivative of \( y = \log(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = \sec(2x) + \tan(2x) \). ### Step 2: Differentiate \( u \) Now we need to find \( \frac{du}{dx} \): \[ u = \sec(2x) + \tan(2x) \] The derivative of \( \sec(2x) \) is \( 2\sec(2x)\tan(2x) \) and the derivative of \( \tan(2x) \) is \( 2\sec^2(2x) \). Therefore: \[ \frac{du}{dx} = 2\sec(2x)\tan(2x) + 2\sec^2(2x) \] ### Step 3: Substitute back into the derivative of \( y \) Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{\sec(2x) + \tan(2x)} \cdot (2\sec(2x)\tan(2x) + 2\sec^2(2x)) \] ### Step 4: Factor out common terms We can factor out the common term \( 2 \): \[ \frac{dy}{dx} = \frac{2(\sec(2x)\tan(2x) + \sec^2(2x))}{\sec(2x) + \tan(2x)} \] ### Final Result Thus, the derivative of the function \( y = \log(\sec(2x) + \tan(2x)) \) is: \[ \frac{dy}{dx} = \frac{2(\sec(2x)\tan(2x) + \sec^2(2x))}{\sec(2x) + \tan(2x)} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

sec 2x - tan 2x=

int secx. log (sec x+ tan x ) dx

(i) int x/(9-4x^2) dx. (ii) int (ax+b)^3 dx (iii) int (sec x)/( log (sec x+ tan x)) dx.

(d)/(dx)[log(sec x+tan x)]=

((ln (sec x + tan x)) / (cos x) dx = ((ln (sec y + tan y)) / (cos y) dy

int_(0)^(pi//2) sec x log (sec x+tan x) dx is equal to

int sec x log (sec x+tan x) dx.

(i) int e^(x). "[log (sec x+tan x) + sec x dx " (ii) int (e^(-x)(cos x-sin x))/(cos^(2) x) dx