Home
Class 12
MATHS
x/(sqrt(1-x^2))...

`x/(sqrt(1-x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of the function \( f(x) = \frac{x}{\sqrt{1 - x^2}} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then its derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = x \) and \( v = \sqrt{1 - x^2} \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = x \) - \( v = \sqrt{1 - x^2} \) ### Step 2: Differentiate \( u \) and \( v \) Now, we need to find the derivatives of \( u \) and \( v \): - \( \frac{du}{dx} = 1 \) - To differentiate \( v \), we use the chain rule: \[ v = (1 - x^2)^{1/2} \] Using the chain rule: \[ \frac{dv}{dx} = \frac{1}{2}(1 - x^2)^{-1/2} \cdot (-2x) = \frac{-x}{\sqrt{1 - x^2}} \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{d}{dx}\left(\frac{x}{\sqrt{1 - x^2}}\right) = \frac{\sqrt{1 - x^2} \cdot 1 - x \cdot \left(\frac{-x}{\sqrt{1 - x^2}}\right)}{(1 - x^2)} \] ### Step 4: Simplify the Expression Now, simplify the expression: \[ = \frac{\sqrt{1 - x^2} + \frac{x^2}{\sqrt{1 - x^2}}}{1 - x^2} \] Combine the terms in the numerator: \[ = \frac{\frac{(1 - x^2) + x^2}{\sqrt{1 - x^2}}}{1 - x^2} = \frac{\frac{1}{\sqrt{1 - x^2}}}{1 - x^2} \] ### Step 5: Final Expression Thus, the derivative simplifies to: \[ \frac{1}{(1 - x^2)^{3/2}} \] ### Final Answer The differential coefficient of the function \( f(x) = \frac{x}{\sqrt{1 - x^2}} \) is: \[ f'(x) = \frac{1}{(1 - x^2)^{3/2}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(2))sqrt(1+x^(2)))dx=

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

Which is not an even function? f(x)=sqrt(1+x+x^(2))+sqrt(1-x+x^(2))

Simplify (x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))+(x-sqrt(x^(2)-1))/(x+sqrt(x^(2)-1))

Differentiate (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)) with respect to x:

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is