Home
Class 12
MATHS
y= (a^2+x^2)/(sqrt(a^2-x^2)) then dy/dx=...

`y= (a^2+x^2)/(sqrt(a^2-x^2))` then dy/dx=

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \frac{a^2 + x^2}{\sqrt{a^2 - x^2}} \), we will use the quotient rule for differentiation. The quotient rule states that if you have a function \( y = \frac{u}{v} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where: - \( u = a^2 + x^2 \) - \( v = \sqrt{a^2 - x^2} \) ### Step 1: Identify \( u \) and \( v \) Let: - \( u = a^2 + x^2 \) - \( v = \sqrt{a^2 - x^2} \) ### Step 2: Differentiate \( u \) and \( v \) Now we differentiate \( u \) and \( v \): - \( \frac{du}{dx} = 0 + 2x = 2x \) - To differentiate \( v \), we use the chain rule: \[ v = (a^2 - x^2)^{1/2} \] Thus, \[ \frac{dv}{dx} = \frac{1}{2}(a^2 - x^2)^{-1/2} \cdot (-2x) = \frac{-x}{\sqrt{a^2 - x^2}} \] ### Step 3: Apply the Quotient Rule Now we substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule formula: \[ \frac{dy}{dx} = \frac{\sqrt{a^2 - x^2} \cdot (2x) - (a^2 + x^2) \cdot \left(\frac{-x}{\sqrt{a^2 - x^2}}\right)}{(\sqrt{a^2 - x^2})^2} \] ### Step 4: Simplify the Expression The denominator simplifies to: \[ (\sqrt{a^2 - x^2})^2 = a^2 - x^2 \] Now substituting back: \[ \frac{dy}{dx} = \frac{\sqrt{a^2 - x^2} \cdot 2x + (a^2 + x^2) \cdot \frac{x}{\sqrt{a^2 - x^2}}}{a^2 - x^2} \] ### Step 5: Combine the Terms Combining the terms in the numerator: \[ \frac{dy}{dx} = \frac{2x\sqrt{a^2 - x^2} + \frac{x(a^2 + x^2)}{\sqrt{a^2 - x^2}}}{a^2 - x^2} \] This can be rewritten as: \[ \frac{dy}{dx} = \frac{2x(a^2 - x^2) + x(a^2 + x^2)}{(a^2 - x^2)\sqrt{a^2 - x^2}} \] ### Step 6: Final Simplification Combining the terms in the numerator: \[ 2xa^2 - 2x^3 + xa^2 + x^3 = 3xa^2 - x^3 \] Thus, we have: \[ \frac{dy}{dx} = \frac{x(3a^2 - x^2)}{(a^2 - x^2)\sqrt{a^2 - x^2}} \] ### Final Answer The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{x(3a^2 - x^2)}{(a^2 - x^2)^{3/2}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

If y=sqrt (a^2-x^2)+a/2 log ((a-sqrt(a^2-x^2))/(a+sqrt(a^2-x^2))) , then find the value of (dy)/(dx)

If y=sqrt(1+x^(2)) then (dy)/(dx) =

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y=(sqrt(x^(2)-3)) , then (dy)/(dx)=

If y=(1)/(sqrt(a^(2)-x^(2)) , find (dy)/(dx) .

If y =sqrt(a^(2) + sqrt( a^(2)+ x^(2)) ),then (dy)/(dx) =

If y=log((x+sqrt(x^(2)+a^(2)))/(-x+sqrt(x^(2)+a^(2))))"then "dy/dx=

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=