Home
Class 12
MATHS
e^((x^2)//(1+x^2))...

`e^((x^2)//(1+x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = e^{\frac{x^2}{1+x^2}} \), we will apply the chain rule and the quotient rule. Here’s a step-by-step solution: ### Step 1: Identify the function and its components We have: \[ f(x) = e^{g(x)} \] where \[ g(x) = \frac{x^2}{1+x^2} \] ### Step 2: Differentiate using the chain rule The derivative of \( f(x) \) with respect to \( x \) is given by: \[ f'(x) = e^{g(x)} \cdot g'(x) \] ### Step 3: Differentiate \( g(x) \) using the quotient rule To differentiate \( g(x) = \frac{x^2}{1+x^2} \), we use the quotient rule: \[ g'(x) = \frac{(u'v - uv')}{v^2} \] where \( u = x^2 \) and \( v = 1 + x^2 \). Calculating \( u' \) and \( v' \): - \( u' = 2x \) - \( v' = 2x \) Now applying the quotient rule: \[ g'(x) = \frac{(2x)(1+x^2) - (x^2)(2x)}{(1+x^2)^2} \] ### Step 4: Simplify \( g'(x) \) Now we simplify the numerator: \[ g'(x) = \frac{2x(1+x^2) - 2x^3}{(1+x^2)^2} \] \[ = \frac{2x + 2x^3 - 2x^3}{(1+x^2)^2} \] \[ = \frac{2x}{(1+x^2)^2} \] ### Step 5: Substitute \( g'(x) \) back into \( f'(x) \) Now substituting \( g'(x) \) back into the expression for \( f'(x) \): \[ f'(x) = e^{g(x)} \cdot g'(x) = e^{\frac{x^2}{1+x^2}} \cdot \frac{2x}{(1+x^2)^2} \] ### Final Result Thus, the derivative of the function is: \[ f'(x) = e^{\frac{x^2}{1+x^2}} \cdot \frac{2x}{(1+x^2)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=log_e((1+x^2)/(1-x^2)) then find 225(y''-y') at x=1/2

Evaluate: int(e^x(1-x)^2)/(1+x^2)^2dx

int(e^x(1-x)^2)/(1+x^2)^2dx

Statement-1: int((x^2+1)/x^2)e^((x^2+1)/x^(2))dx=e^((x^2+1)/x^(2))+C Statement-2: intf(x)e^(f(x))dx=f(x)+C (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

int e^(x) ((1+ x^(2)))/((1+x)^(2))dx

lim_(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

(d)/(dx)[log{e^(x)((x-2)/(x+2))^(3/4)}] equals (x^(2)-1)/(x^(2)-4) (b) 1 (c) (x^(2)+1)/(x^(2)-4) (d) e^(x)(x^(2)-1)/(x^(2)-4)

STATEMENT-1 : int(x^(2)-1)/(x^(2))e^(((x^(2)+1)/(x)))dx=e^((x^(2)+1)/x)+C and STATEMENT-2 : intf'(x)e^(f(x))dx=e^(f(x))+c

If f(x)=(log)_(e)((x^(2)+e)/(x^(2)+1)), then the range of f(x)

Evaluate: int e^(x)((x-1)/(2x^(2)))dx