Home
Class 12
MATHS
log (x+sqrt(x^2-1))...

`log (x+sqrt(x^2-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \log(x + \sqrt{x^2 - 1}) \) with respect to \( x \), we will use the chain rule and the properties of logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ f(x) = \log(x + \sqrt{x^2 - 1}) \] ### Step 2: Differentiate using the chain rule Using the chain rule, the derivative of \( \log(u) \) is given by: \[ \frac{d}{dx} \log(u) = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = x + \sqrt{x^2 - 1} \). ### Step 3: Find \( \frac{du}{dx} \) Now, we need to differentiate \( u \): \[ u = x + \sqrt{x^2 - 1} \] Differentiating \( u \): \[ \frac{du}{dx} = 1 + \frac{d}{dx}(\sqrt{x^2 - 1}) \] Using the chain rule for the square root: \[ \frac{d}{dx}(\sqrt{x^2 - 1}) = \frac{1}{2\sqrt{x^2 - 1}} \cdot \frac{d}{dx}(x^2 - 1) = \frac{1}{2\sqrt{x^2 - 1}} \cdot 2x = \frac{x}{\sqrt{x^2 - 1}} \] Thus, \[ \frac{du}{dx} = 1 + \frac{x}{\sqrt{x^2 - 1}} \] ### Step 4: Substitute back into the derivative Now substituting \( u \) and \( \frac{du}{dx} \) back into the derivative of \( f(x) \): \[ \frac{df}{dx} = \frac{1}{u} \cdot \frac{du}{dx} = \frac{1}{x + \sqrt{x^2 - 1}} \left( 1 + \frac{x}{\sqrt{x^2 - 1}} \right) \] ### Step 5: Simplify the expression Now we simplify: \[ \frac{df}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 - 1}}}{x + \sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1} + x}{(x + \sqrt{x^2 - 1}) \sqrt{x^2 - 1}} \] ### Step 6: Final result Thus, the derivative of the function is: \[ \frac{df}{dx} = \frac{1}{\sqrt{x^2 - 1}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

The valuses of x for which 1+x log_e (x+sqrt(x^2+1)) le sqrt(x^2 +1) are

The value of int_(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x sqrt(1+x^(2))))/(x+log(x+logsqrt(1+x^(2))))f(-x)dx ,

The function f(x) = sec[log(x + sqrt(1+x^2))] is

log(x+sqrt(1+x^(2)))

Find whether the following functions are even or odd or none f(x)=log(x+sqrt(1+x^(2)))

Domain of f(x)=log(1-x)+sqrt(x^(2)-1)

Show that log(x+sqrt(1+x^(2))) 1

The domain of the function f(x)=log(1-x)+sqrt(x^(2)-1)is3 is

Let f(x) = log (1-x) +sqrt(x^(2)-1). Then dom (f )=?

If int(log"("x+sqrt(1+x^(2))")")/(sqrt(1+x^(2)))dx="gof"(x)+"constant, then"