Home
Class 12
MATHS
tan^2((pix^2)/2)...

`tan^2((pix^2)/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of differentiating \( y = \tan^2\left(\frac{\pi x^2}{2}\right) \), we will use the chain rule and the derivative of the tangent function. Here’s a step-by-step solution: ### Step 1: Identify the function Let: \[ y = \tan^2\left(\frac{\pi x^2}{2}\right) \] ### Step 2: Apply the chain rule To differentiate \( y \), we will use the chain rule. The derivative of \( \tan^2(u) \) is \( 2\tan(u) \cdot \sec^2(u) \cdot \frac{du}{dx} \), where \( u = \frac{\pi x^2}{2} \). ### Step 3: Differentiate the outer function First, differentiate \( \tan^2(u) \): \[ \frac{dy}{du} = 2\tan(u) \sec^2(u) \] ### Step 4: Differentiate the inner function Now, differentiate \( u = \frac{\pi x^2}{2} \): \[ \frac{du}{dx} = \frac{\pi}{2} \cdot 2x = \pi x \] ### Step 5: Combine the derivatives Now, using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 2\tan\left(\frac{\pi x^2}{2}\right) \sec^2\left(\frac{\pi x^2}{2}\right) \cdot \pi x \] ### Step 6: Write the final derivative Thus, the derivative of \( y = \tan^2\left(\frac{\pi x^2}{2}\right) \) is: \[ \frac{dy}{dx} = 2\pi x \tan\left(\frac{\pi x^2}{2}\right) \sec^2\left(\frac{\pi x^2}{2}\right) \] ### Summary The final answer is: \[ \frac{dy}{dx} = 2\pi x \tan\left(\frac{\pi x^2}{2}\right) \sec^2\left(\frac{\pi x^2}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr1)(1-x)tan((pix)/2) is equal to

The limit underset( x rarr a ) ("Lim") (2 -( a)/(x))^(tan ((pix)/( 2a))) is equal to

(lim)_(x->1)(1-x)tan((pix)/2)\ a. pi/2 b. pi c. 2/pi d. 0

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

Let f(x) =1/2-tan((pix)/2) , -1

If f(x)=(1)/(2)-tan((pix)/(2)),-1 lt xlt1 and g(x)=sqrt(3+4x-4x^(2)) , then domain (f+g) is given by

Evaluate lim_(xtoa)(2-a/x)^("tan"(pix)/(2a)

(lim)_(x->1)(2-x)^(tan(pix)/2)

The value of lim_(xrarr1) (2-x)^(tan.(pix)/(2)) is equal to