Home
Class 12
MATHS
e^x.log (sin 2 x)...

`e^x.log (sin 2 x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = e^x \log(\sin(2x)) \) with respect to \( x \), we will use the product rule and the chain rule. ### Step-by-Step Solution: 1. **Identify the function**: We have \( y = e^x \log(\sin(2x)) \). 2. **Apply the Product Rule**: The product rule states that if you have two functions \( u \) and \( v \), then the derivative \( \frac{d}{dx}(uv) = u'v + uv' \). Here, let: - \( u = e^x \) - \( v = \log(\sin(2x)) \) 3. **Differentiate \( u \)**: The derivative of \( u = e^x \) is: \[ u' = e^x \] 4. **Differentiate \( v \)**: To differentiate \( v = \log(\sin(2x)) \), we will use the chain rule: \[ v' = \frac{1}{\sin(2x)} \cdot \frac{d}{dx}(\sin(2x)) \] Now, differentiate \( \sin(2x) \): \[ \frac{d}{dx}(\sin(2x)) = 2\cos(2x) \] Therefore, substituting this back, we get: \[ v' = \frac{1}{\sin(2x)} \cdot 2\cos(2x) = \frac{2\cos(2x)}{\sin(2x)} = 2\cot(2x) \] 5. **Combine using the Product Rule**: Now we can combine the derivatives using the product rule: \[ \frac{dy}{dx} = u'v + uv' = e^x \log(\sin(2x)) + e^x \cdot 2\cot(2x) \] 6. **Final expression**: Thus, the derivative of \( y \) is: \[ \frac{dy}{dx} = e^x \log(\sin(2x)) + 2e^x \cot(2x) \] ### Final Answer: \[ \frac{dy}{dx} = e^x \log(\sin(2x)) + 2e^x \cot(2x) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=e^(x) log (sin 2x), find (dy)/(dx) .

cos^3x e^(log sin x)

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

int (e ^ (x) log (sin e ^ (x))) / (tan (e ^ (x)) dx)

Differentiate e^(x)log sin2x with respect to x:

integrated e ^ (x) (log sin e ^ (x)) / (tan e ^ (x))

int(1)/(1+tan x)dx=(log)_(e)(x+sin x)+C(b)(log)_(e)(sin x+cos x)+C(c)2(sec^(2)x)/(2)+C(d)(1)/(2){x+log(sin x+cos x)}+C

int e^(x)(log sin x+cot x)dx

If u=e ^(log cos 4x ),v =e ^(log sin 4x ),then (dv)/(du)=

int e^(log sin x)dx is