Home
Class 12
MATHS
sin((1+x^(2))/(1-x^2))...

`sin((1+x^(2))/(1-x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin\left(\frac{1 + x^2}{1 - x^2}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the function Let: \[ y = \sin\left(\frac{1 + x^2}{1 - x^2}\right) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we will use the chain rule. The derivative of \( \sin(u) \) is \( \cos(u) \cdot \frac{du}{dx} \), where \( u = \frac{1 + x^2}{1 - x^2} \). Thus, we have: \[ \frac{dy}{dx} = \cos\left(\frac{1 + x^2}{1 - x^2}\right) \cdot \frac{d}{dx}\left(\frac{1 + x^2}{1 - x^2}\right) \] ### Step 3: Differentiate the inner function using the quotient rule Now we need to differentiate \( u = \frac{1 + x^2}{1 - x^2} \) using the quotient rule. The quotient rule states that if \( u = \frac{p}{q} \), then: \[ \frac{du}{dx} = \frac{p' \cdot q - p \cdot q'}{q^2} \] where \( p = 1 + x^2 \) and \( q = 1 - x^2 \). Calculating \( p' \) and \( q' \): - \( p' = 2x \) - \( q' = -2x \) Now applying the quotient rule: \[ \frac{du}{dx} = \frac{(2x)(1 - x^2) - (1 + x^2)(-2x)}{(1 - x^2)^2} \] ### Step 4: Simplify the expression Now simplify the numerator: \[ = \frac{2x(1 - x^2) + 2x(1 + x^2)}{(1 - x^2)^2} \] \[ = \frac{2x - 2x^3 + 2x + 2x^3}{(1 - x^2)^2} \] \[ = \frac{4x}{(1 - x^2)^2} \] ### Step 5: Combine the results Now substitute \( \frac{du}{dx} \) back into the derivative of \( y \): \[ \frac{dy}{dx} = \cos\left(\frac{1 + x^2}{1 - x^2}\right) \cdot \frac{4x}{(1 - x^2)^2} \] ### Final Result Thus, the derivative of the function is: \[ \frac{dy}{dx} = \frac{4x \cos\left(\frac{1 + x^2}{1 - x^2}\right)}{(1 - x^2)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Solve for x:sin^(-1)(sin((2x^(2)+4)/(1+x^(2))))

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1) , then x_(1) + x_(2) is equal to

sqrt(1+sin x)+sqrt((1-x^(2))/(1+x^(2)))

If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx) is equal to

∫sin^-1 ((2x)/(1+x^2))

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

Prove that 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))=pi

The value of cos[2tan^(-1)(1+x)/(1-x)+sin^(-1)(1-x^(2))/(1+x^(2))] is

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1