Home
Class 12
MATHS
If y=sinx.cos(2x) then prove that (dy)/(...

If `y=sinx.cos(2x)` then prove that `(dy)/(dx)=y[cotx-2tan2x]`

Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

If y=sin(sinx) then prove that (d^2y)/(dx^2)+tanx. (dy)/(dx)+y cos^2x=0

If y,=2tan backslash(x)/(2), then prove that (dy)/(dx),=(2)/(1+cos x)

"If "y=(tanx)^(cotx)+(cotx)^(tanx)",prove that "(dy)/(dx)=(tanx)^(cotx)."cosec"^(2)x(1-logtanx)+(cotx)^(tanx).sec^(2)x[log(cotx)-1].

(dy)/(dx) = y tan x - 2 sinx

If y=tan x. cos^(2)x then (dy)/(dx) will be-