Home
Class 12
MATHS
cos ^(-1)(x/a)...

`cos ^(-1)(x/a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos^{-1}\left(\frac{x}{a}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ y = \cos^{-1}\left(\frac{x}{a}\right) \] ### Step 2: Differentiate using the chain rule We know that the derivative of \( \cos^{-1}(u) \) with respect to \( u \) is: \[ \frac{d}{du} \cos^{-1}(u) = -\frac{1}{\sqrt{1 - u^2}} \] In our case, \( u = \frac{x}{a} \). Therefore, we apply the chain rule: \[ \frac{dy}{dx} = \frac{d}{du} \cos^{-1}(u) \cdot \frac{du}{dx} \] ### Step 3: Differentiate \( u = \frac{x}{a} \) Now we need to find \( \frac{du}{dx} \): \[ u = \frac{x}{a} \implies \frac{du}{dx} = \frac{1}{a} \] ### Step 4: Substitute back into the derivative Substituting \( u \) and \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} \cdot \frac{1}{a} \] ### Step 5: Simplify the expression Now we simplify the expression: \[ \frac{dy}{dx} = -\frac{1}{a \sqrt{1 - \frac{x^2}{a^2}}} \] This can be rewritten as: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{a^2 - x^2}} \] ### Final Result Thus, the derivative of the function \( y = \cos^{-1}\left(\frac{x}{a}\right) \) is: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{a^2 - x^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)x+cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

cos^(-1)((x^(2))/(6)+sqrt(1-(x^(2))/(9))sqrt(1-(x^(2))/(4)))=cos^(-1)((x)/(3))-cos^(-1)((x)/(2)) hold for all x belonging to

Is cos^(-1) (-x) = pi - cos^(-1) x , x in [-1,1] ?

If |x|<=1 then prove that cos^(-1)(-x)=pi-cos^(-1)x

2cos^(-1)x=cos^(-1)(2x^(2)-1)

int (sin ^ (- 1) x-cos ^ (- 1) x) / (sin ^ (- 1) x + cos ^ (- 1) x) dx =

Formula for cos^(-1)(x)+-cos^(-1)(y)

" (2) "sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)" is equal to "