Home
Class 12
MATHS
(i) tan^(-1)sqrt(x) (ii) tan ^(-1)(2x+1)...

(i) `tan^(-1)sqrt(x)` (ii) `tan ^(-1)(2x+1)`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2sqrt(x)(1+x))`
(ii) `(1)/(2x^2+2x+1)`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Prove that: i) tan^(-1)(sqrt(x)+sqrt(y))/(1-sqrt(xy))=tan^(-1)sqrt(x)+tan^(-1)sqrt(y) ii) tan^(-1)(x+sqrt(x))/(1-x^(3//2))=tan^(-1)x+tan^(-1)sqrt(x) iii) tan^(-1)(sinx)/(1+cosx)=x/2

Differentiate each of the following w.r.t. x: (i) tan^(-1)(sqrt(1+x^(2))+x)" "(ii)tan^(-1)(sqrt(1+x^(2))-x)

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

if int tan^(-1)sqrt(x)dx=u tan^(-1)sqrt(x)-sqrt(x)+c then u=

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

tan^(-1)(sqrt((1-x)/(1+x)))