Home
Class 12
MATHS
cosec^(-1)3x...

`cosec^(-1)3x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \csc^{-1}(3x) \), we can follow these steps: ### Step 1: Rewrite the function Let \( y = \csc^{-1}(3x) \). ### Step 2: Use the derivative formula We know that the derivative of \( \csc^{-1}(x) \) is given by: \[ \frac{d}{dx} \csc^{-1}(x) = -\frac{1}{|x| \sqrt{x^2 - 1}} \] In our case, we have \( x = 3x \). ### Step 3: Apply the chain rule Using the chain rule, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \csc^{-1}(3x) = -\frac{1}{|3x| \sqrt{(3x)^2 - 1}} \cdot \frac{d}{dx}(3x) \] ### Step 4: Differentiate \( 3x \) The derivative of \( 3x \) with respect to \( x \) is simply \( 3 \): \[ \frac{d}{dx}(3x) = 3 \] ### Step 5: Substitute back into the derivative Now substituting back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{1}{|3x| \sqrt{(3x)^2 - 1}} \cdot 3 \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = -\frac{3}{|3x| \sqrt{9x^2 - 1}} \] ### Final Answer Thus, the derivative of \( y = \csc^{-1}(3x) \) is: \[ \frac{dy}{dx} = -\frac{3}{|3x| \sqrt{9x^2 - 1}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

sin(sec^(-1)x+"cosec"^(-1)x)

Sove sec^(-1) x gt cosec^(-1) x

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

If cosec^(-1)x+cosec^(-1)y+cosec^(-1)z=-(3pi)/(2),then x/y+y/z+z/x=

sec^(-1)x + "cosec"^(-1) x ___________

Range of "cosec"^(-1)x is

If cosec^(-1)x=2cot^(-1)7+cos^(-1)((3)/(5)) , then x=

Evaluate: cos(sec^(-1)x+csc^(-1)x)|x|>=1

sin^(-1) x+"cosec"^(-1)x at x=-1 is