Home
Class 12
MATHS
cos^(-1)((1-x)/(1+x))...

`cos^(-1)((1-x)/(1+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos^{-1}\left(\frac{1-x}{1+x}\right) \), we will follow these steps: ### Step 1: Rewrite the function We can express the function in a more manageable form. Recognizing that: \[ y = \cos^{-1}\left(\frac{1-x}{1+x}\right) \] can be rewritten using the identity for the inverse cosine function. ### Step 2: Use the derivative of the inverse cosine The derivative of \( y = \cos^{-1}(u) \) with respect to \( x \) is given by: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{1-x}{1+x} \). ### Step 3: Differentiate \( u \) Now, we need to find \( \frac{du}{dx} \): \[ u = \frac{1-x}{1+x} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{(1+x)(-1) - (1-x)(1)}{(1+x)^2} = \frac{-1 - x - 1 + x}{(1+x)^2} = \frac{-2}{(1+x)^2} \] ### Step 4: Calculate \( u^2 \) Next, we need to calculate \( 1 - u^2 \): \[ u^2 = \left(\frac{1-x}{1+x}\right)^2 = \frac{(1-x)^2}{(1+x)^2} \] Thus, \[ 1 - u^2 = 1 - \frac{(1-x)^2}{(1+x)^2} = \frac{(1+x)^2 - (1-x)^2}{(1+x)^2} \] Calculating the numerator: \[ (1+x)^2 - (1-x)^2 = (1 + 2x + x^2) - (1 - 2x + x^2) = 4x \] So, \[ 1 - u^2 = \frac{4x}{(1+x)^2} \] ### Step 5: Substitute into the derivative formula Now we can substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} = -\frac{1}{\sqrt{\frac{4x}{(1+x)^2}}} \cdot \left(-\frac{2}{(1+x)^2}\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{2}{(1+x)^2 \cdot \sqrt{\frac{4x}{(1+x)^2}}} = \frac{2}{(1+x)^2} \cdot \frac{(1+x)}{2\sqrt{x}} = \frac{1}{(1+x)\sqrt{x}} \] ### Final Answer Thus, the derivative of the function \( y = \cos^{-1}\left(\frac{1-x}{1+x}\right) \) is: \[ \frac{dy}{dx} = \frac{1}{(1+x)\sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)((1-x^(2))/(1+x^(2)))

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x

cos^(-1)((1-x^(2))/(1+x^(2)))w.r.t. tan^(-1)x

Find the derivative of y=cos^(-1)((1-x^2)/(1+x^2)) , 0

Discuss the differentiability of f(x=cos^(-1)((1-x^2)/(1+x^2))

d/(dx)(cos^(-1)((1 - x^2)/(1 + x^2))) =.............. If x is positive

Prove that: sin[tan^(-1)((1 - x^2)/(2x)) + cos^(-1) ((1 - x^2)/(1 + x^2))] = 1