Home
Class 12
MATHS
sin^(-1)"(x)/(1+x)...

`sin^(-1)"(x)/(1+x)`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/((x+1)sqrt(2x+1))`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

f(x)= sin^(-1)((x)/(1+|x|))

Find the value of sin^(-1)x+sin^(-1)(1)/(x)+cos^(-1)x+cos^(-1)(1)/(x)

For which values of x, function f(x) = sin^(-1) x + sin^(-1).(1)/(x) + cos^(-1) x + cos^(-1).(1)/(x) is defined? Also, find the range

The value of x satisfying sin^(-1)x+sin^(-1)(1x)=cos^(1)x are

Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

If x(3-x)<=2 then sin^(-1)(x)+sin^(-1)(x^(2))+......+sin^(-1)(x^(10))=

sin^(-1)[sqrt(x^(2)-x^(3))-sqrt(x-x^(3))]=..... a) sin^(-1)x+sin^(-1)sqrt(x) b) sin^(-1)x-sin^(-1)sqrt(x) c) sin^(-1)sqrt(x)-sin^(-1)x d) 2sin^(-1)x

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

The area of the region, bounded by the curves y=sin^(-1)x+x(1-x) and y=sin^(-1)x-x(1-x) in the first quadrant (in sq. units), is

Solve: sin^-1 (x/(sqrt(1+x^2)))- sin (1/(sqrt(1+x^2)))= sin^-1 ((1+x)/(1+x^2))