Home
Class 12
MATHS
sin (tan ^(-1)2x)...

`sin (tan ^(-1)2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(\tan^{-1}(2x)) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the function and its composition Let: \[ y = \sin(\tan^{-1}(2x)) \] This function is a composition of the sine function and the inverse tangent function. ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The chain rule states that if \( y = f(g(x)) \), then: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] In our case, let: - \( f(u) = \sin(u) \) where \( u = \tan^{-1}(2x) \) - \( g(x) = \tan^{-1}(2x) \) ### Step 3: Differentiate the outer function The derivative of \( f(u) = \sin(u) \) is: \[ f'(u) = \cos(u) \] Thus, \[ f'(\tan^{-1}(2x)) = \cos(\tan^{-1}(2x)) \] ### Step 4: Differentiate the inner function Next, we differentiate \( g(x) = \tan^{-1}(2x) \): \[ g'(x) = \frac{1}{1 + (2x)^2} \cdot \frac{d}{dx}(2x) = \frac{1}{1 + 4x^2} \cdot 2 = \frac{2}{1 + 4x^2} \] ### Step 5: Combine the derivatives Now, we can combine the derivatives using the chain rule: \[ \frac{dy}{dx} = \cos(\tan^{-1}(2x)) \cdot \frac{2}{1 + 4x^2} \] ### Step 6: Simplify \( \cos(\tan^{-1}(2x)) \) To simplify \( \cos(\tan^{-1}(2x)) \), we can use the identity: \[ \cos(\tan^{-1}(a)) = \frac{1}{\sqrt{1 + a^2}} \] Here, \( a = 2x \), so: \[ \cos(\tan^{-1}(2x)) = \frac{1}{\sqrt{1 + (2x)^2}} = \frac{1}{\sqrt{1 + 4x^2}} \] ### Step 7: Final expression for the derivative Substituting this back into our derivative expression gives: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 + 4x^2}} \cdot \frac{2}{1 + 4x^2} = \frac{2}{(1 + 4x^2) \sqrt{1 + 4x^2}} \] Thus, the final answer is: \[ \frac{dy}{dx} = \frac{2}{(1 + 4x^2) \sqrt{1 + 4x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

int (cos (tan ^ (- 1) x) + sin (tan ^ (- 1) x)) / (1 + x ^ (2)) dx

tan (cos ^ (- 1) x) = sin (tan ^ (- 1) 2)

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

int (sin (2tan^(-1)x))/((1+x^(2)))dx.

Evaluate : int (sin (2 tan^(-1)x))/(1+x^(2))dx

If x = sin (2tan ^ (- 1) 2), y = sin ((1) / (2) tan ^ (- 1) ((4) / (3))), then -

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx