Home
Class 12
MATHS
e^(ax).sin^-1bx...

`e^(ax).sin^-1bx`

Text Solution

Verified by Experts

The correct Answer is:
`(e^(tan^(-1_x)).cos e^(tan^(-1_x)))/(1+x^2)`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find derivative of y=e^(ax)sin bx

find y_(n) where y=e^(ax)sin bx

Write a value of int e^(ax)sin bxdx

Verify that the function y=C_(1)e^(x)cos bx+C_(2)e^(ax)sin bx,C_(1),C_(2) are arbitrary constants is a solution of the differential equation: (d^(2)y)/(dx)-2a(dy)/(dx)+(a^(2)+b^(2))y=0

Verify that the function y=c_(1)e^(ax)cos(bx)+c_(2)e^(ax)sin(bx)

If u=e^(ax)sin bx and v=e^(ax)cos bx, then what is

int (e ^ (ax) + sin bx) dx

d/(dx)[e^(ax)/(sin(bx+c))]=

Evaluate: int e^(ax)sin(bx+c)dx