Home
Class 12
MATHS
y=(logx)^(x)...

`y=(logx)^(x)`

Text Solution

Verified by Experts

The correct Answer is:
`(logx)^(x)[log(logx)+1/(logx)]`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=x^(logx)+(logx)^(x)

If , y=(logx )^(sin x ) ,then (dy)/(dx) =

If y=x^((logx)^(log(logx))) , then (dy)/(dx) is

If y= (log x) ^(logx) ,then (dy)/(dx)=

If y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s (a)y/x(1n x^(oox-1))+21 nx1n(1nx)) (b)y/x(logx)^("log"(logx))(2log(logx)+1) (c)y/(x1nx)[(1nx)^2+21 n(1nx)] (d)y/x(logy)/(logx)[2log(logx)+1]

If y=(logx)^(cosx)+(x^(2)+1)/(x^(2)-1) , find (dy)/(dx).

Find the area bounded by the curves y=logx and y=(logx)^2 .

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=x^(n)logx+x(logx)^(n)," then "(dy)/(dx) is equal to

If x^(y)=e^(x)," then "(logx)^(2)y_(1)=