Home
Class 12
MATHS
y=(log(e)x)^(sinx)...

`y=(log_(e)x)^(sinx)`

Text Solution

Verified by Experts

The correct Answer is:
`(log_(e)X)^(sinx)[(sinx)/(xlog_(e)x)+cosxcdotlog_(e)(log_(e)x)]`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Draw the graph of y=(log_(e)x)^(2)

If y=(log_ex)/(x)+e^(x)sinx+log_(5)x then find (dy)/(dx) .

If y=log_(e) e^(sinx^(2))," find "(dy)/(dx)

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If y=((log)_(cosx)sinx)((log)_(sinx)cosx)+sin^(-1)(2x)/(1+x^2) , then (dy)/(dx) at x=pi/2 is equal to.......

Sketch the region bounded by the curves y=log_(e)x and y=(log_(e)x)^(2). Also find the area of the region.

Plot the curve y=log_(e)(-x)

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =