Home
Class 12
MATHS
y=(sinx)^(logx)...

`y=(sinx)^(logx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\sin x)^{\log x} \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log((\sin x)^{\log x}) \] ### Step 2: Use the power rule of logarithms Using the property of logarithms that states \( \log(a^b) = b \cdot \log a \), we can rewrite the equation: \[ \log y = \log x \cdot \log(\sin x) \] ### Step 3: Differentiate both sides with respect to \( x \) Now, we differentiate both sides with respect to \( x \). We will use implicit differentiation on the left side and the product rule on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\log x \cdot \log(\sin x)) \] Using the product rule, we have: \[ \frac{d}{dx}(\log x \cdot \log(\sin x)) = \log(\sin x) \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}(\log(\sin x)) \] ### Step 4: Compute the derivatives Now we compute the derivatives: - The derivative of \( \log x \) is \( \frac{1}{x} \). - The derivative of \( \log(\sin x) \) is \( \frac{\cos x}{\sin x} = \cot x \). Substituting these derivatives back into our equation gives: \[ \frac{1}{y} \frac{dy}{dx} = \log(\sin x) \cdot \frac{1}{x} + \log x \cdot \cot x \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \frac{\log(\sin x)}{x} + \log x \cdot \cot x \right) \] ### Step 6: Substitute back for \( y \) Recall that \( y = (\sin x)^{\log x} \), so we substitute this back into our expression: \[ \frac{dy}{dx} = (\sin x)^{\log x} \left( \frac{\log(\sin x)}{x} + \log x \cdot \cot x \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (\sin x)^{\log x} \left( \frac{\log(\sin x)}{x} + \log x \cdot \cot x \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y= (sin x)^(logx ),then (dy)/(dx)=

Find (dy)/(dx) , when: y=(cosx)^(logx)

y=(tanx)^(logx)+(cosx)^(sinx)

d/(dx){(sinx)^(logx)} is equal to..........

Differentiate (sinx)^(logx) w.r.t. x.

y=(sinx)^(cosx)+(cosx)^(sinx)

Differentiate the following w.r.t. x : (sinx)^(logx),sinxgt0

If y+d/(dx)(xy)=x(sinx+logx) , find y(x) .

If y=(sinx)^((sinx)^((sinx)...oo))," prove that "(dy)/(dx)=(y^(2)cotx)/((1-ylog sinx)).

Differentiate the following w.r.t. x : x^(sinx)+(logx)^(x)