Home
Class 12
MATHS
Find dy/dx when (tanx)^(y)=(tany)^(x)...

Find `dy/dx` when `(tanx)^(y)=(tany)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) when \( (\tan x)^y = (\tan y)^x \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ (\tan x)^y = (\tan y)^x \] Taking the logarithm of both sides gives: \[ \log((\tan x)^y) = \log((\tan y)^x) \] ### Step 2: Use the logarithmic identity Using the property of logarithms \( \log(a^b) = b \cdot \log(a) \), we can rewrite the equation as: \[ y \cdot \log(\tan x) = x \cdot \log(\tan y) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \). We will use the product rule on both sides: \[ \frac{d}{dx}(y \cdot \log(\tan x)) = \frac{d}{dx}(x \cdot \log(\tan y)) \] Using the product rule, we have: \[ \frac{dy}{dx} \cdot \log(\tan x) + y \cdot \frac{d}{dx}(\log(\tan x)) = \log(\tan y) + x \cdot \frac{d}{dx}(\log(\tan y)) \] ### Step 4: Differentiate the logarithmic terms Now we differentiate the logarithmic terms: \[ \frac{d}{dx}(\log(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x \] \[ \frac{d}{dx}(\log(\tan y)) = \frac{1}{\tan y} \cdot \sec^2 y \cdot \frac{dy}{dx} \] Substituting these derivatives back into our equation gives: \[ \frac{dy}{dx} \cdot \log(\tan x) + y \cdot \left(\frac{\sec^2 x}{\tan x}\right) = \log(\tan y) + x \cdot \left(\frac{\sec^2 y}{\tan y} \cdot \frac{dy}{dx}\right) \] ### Step 5: Rearranging the equation Now we rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \cdot \log(\tan x) - x \cdot \left(\frac{\sec^2 y}{\tan y} \cdot \frac{dy}{dx}\right) = \log(\tan y) - y \cdot \left(\frac{\sec^2 x}{\tan x}\right) \] Factoring out \( \frac{dy}{dx} \) gives: \[ \frac{dy}{dx} \left(\log(\tan x) - x \cdot \frac{\sec^2 y}{\tan y}\right) = \log(\tan y) - y \cdot \frac{\sec^2 x}{\tan x} \] ### Step 6: Solve for \( \frac{dy}{dx} \) Finally, we solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\log(\tan y) - y \cdot \frac{\sec^2 x}{\tan x}}{\log(\tan x) - x \cdot \frac{\sec^2 y}{\tan y}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{\log(\tan y) - y \cdot \frac{\sec^2 x}{\tan x}}{\log(\tan x) - x \cdot \frac{\sec^2 y}{\tan y}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : y=(x+tanx)/(tanx)

Find (dy)/(dx) when x^(y)=e^(x+y)

Find (dy)/(dx) , when: y=(tanx)^(sinx)

Find (dy)/(dx) , when: y=(tanx)^(cotx)

Find (dy)/(dx) , when: y=(tanx)^(1//x)

Find (dy)/(dx) when x^(y)+y^(x)=a^(b)

Find (dy)/(dx) when x^(y)+y^(x)=a^(b)

Find (dy)/(dx) , when: y=(logx)^(x)

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)

Find (dy)/(dx) , when: y=(x^(3)sinx)/(e^(x))