Home
Class 12
MATHS
y=(sinx)^(tanx)+(cosx)^(secx)...

`y=(sinx)^(tanx)+(cosx)^(secx)`

Text Solution

Verified by Experts

The correct Answer is:
`(sinx)^(tanx)[1+log(sinx)cdot sec^(2)x]+(cosx)^(secx)cdot secxsecxtanx[log(cosx)-1]`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

y=(sinx)^(cosx)+(cosx)^(sinx)

y=e^(sinx)+(tanx)^(x)

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

y = x^(sinx).(tanx)^(x)

y=(tanx)^(logx)+(cosx)^(sinx)

Differentiate the following w.r.t. x : (sinx)^(secx)+(tanx)^(cosx)

Integrate 1. cotx/(log(sinx)) 2. tanx/(log(secx))

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in R , is