Home
Class 12
MATHS
y=(sinx)^(cosx)+(cosx)^(sinx)...

`y=(sinx)^(cosx)+(cosx)^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\sin x)^{\cos x} + (\cos x)^{\sin x} \), we will differentiate each term separately using logarithmic differentiation. ### Step-by-Step Solution: 1. **Define the Function**: \[ y = (\sin x)^{\cos x} + (\cos x)^{\sin x} \] 2. **Differentiate the First Term** \( y_1 = (\sin x)^{\cos x} \): - Take the natural logarithm of both sides: \[ \log y_1 = \cos x \cdot \log(\sin x) \] - Differentiate both sides with respect to \( x \): \[ \frac{1}{y_1} \frac{dy_1}{dx} = -\sin x \cdot \log(\sin x) + \cos x \cdot \frac{\cos x}{\sin x} \] - Rearranging gives: \[ \frac{dy_1}{dx} = y_1 \left( -\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x} \right) \] - Substitute \( y_1 \): \[ \frac{dy_1}{dx} = (\sin x)^{\cos x} \left( -\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x} \right) \] 3. **Differentiate the Second Term** \( y_2 = (\cos x)^{\sin x} \): - Take the natural logarithm of both sides: \[ \log y_2 = \sin x \cdot \log(\cos x) \] - Differentiate both sides with respect to \( x \): \[ \frac{1}{y_2} \frac{dy_2}{dx} = \cos x \cdot \log(\cos x) - \sin x \cdot \tan x \] - Rearranging gives: \[ \frac{dy_2}{dx} = y_2 \left( \cos x \cdot \log(\cos x) - \sin x \cdot \tan x \right) \] - Substitute \( y_2 \): \[ \frac{dy_2}{dx} = (\cos x)^{\sin x} \left( \cos x \cdot \log(\cos x) - \sin x \cdot \tan x \right) \] 4. **Combine the Derivatives**: - The total derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] - Substituting the expressions for \( \frac{dy_1}{dx} \) and \( \frac{dy_2}{dx} \): \[ \frac{dy}{dx} = (\sin x)^{\cos x} \left( -\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x} \right) + (\cos x)^{\sin x} \left( \cos x \cdot \log(\cos x) - \sin x \cdot \tan x \right) \] ### Final Answer: \[ \frac{dy}{dx} = (\sin x)^{\cos x} \left( -\sin x \cdot \log(\sin x) + \frac{\cos^2 x}{\sin x} \right) + (\cos x)^{\sin x} \left( \cos x \cdot \log(\cos x) - \sin x \cdot \tan x \right) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=(tanx)^(logx)+(cosx)^(sinx)

If y=(x)^(cosx)+(cosx)^(sinx) , find (dy)/(dx).

y=(sinx)^(tanx)+(cosx)^(secx)

What is (sinx)/(1+cosx)+(1+cosx)/(sinx) equal to ?

If (1+sinx)/(cosx)+(cosx)/(1+sinx)=4 , then find x.

Prove the following Identities (cosx+sinx)/(cosx-sinx)-(cosx-sinx)/(cosx+sinx)=2tan2x

int(dx)/((sinx+cosx)(2cosx+sinx))=

If y=(sinx)/(1+(cosx)/(1+(sinx)/(1+(cosx)/(1+ tooo)))),p rov et h a t(dy)/(dx)=((1+y)cosx+ysinx)/(1+2y+cosx-sinx)

If y=(sinx)/(1+(cosx)/(1+(sinx)/(1+(cosx)/(1+ ddotto oo)))) , prove that (dy)/(dx)=((1+y)cosx+ysinx)/(1+2y+cosx-sinx)

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.