Home
Class 12
MATHS
y=(tanx)^(cotx)+(cotx)^(tanx)...

`y=(tanx)^(cotx)+(cotx)^(tanx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = (\tan x)^{\cot x} + (\cot x)^{\tan x} \), we will break it down into two parts and differentiate each part separately. ### Step-by-Step Solution: 1. **Define the components**: Let \[ y_1 = (\tan x)^{\cot x} \quad \text{and} \quad y_2 = (\cot x)^{\tan x} \] Then, \[ y = y_1 + y_2 \] 2. **Differentiate \( y \)**: Using the sum rule of differentiation: \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] 3. **Differentiate \( y_1 \)**: For \( y_1 = (\tan x)^{\cot x} \), take the natural logarithm: \[ \log y_1 = \cot x \cdot \log(\tan x) \] Differentiate both sides with respect to \( x \): \[ \frac{1}{y_1} \frac{dy_1}{dx} = \frac{d}{dx}(\cot x \cdot \log(\tan x)) \] Using the product rule: \[ \frac{d}{dx}(\cot x \cdot \log(\tan x)) = \cot x \cdot \frac{d}{dx}(\log(\tan x)) + \log(\tan x) \cdot \frac{d}{dx}(\cot x) \] Now calculate \( \frac{d}{dx}(\log(\tan x)) \) and \( \frac{d}{dx}(\cot x) \): \[ \frac{d}{dx}(\log(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x = \frac{\sec^2 x}{\tan x} \] \[ \frac{d}{dx}(\cot x) = -\csc^2 x \] Thus, \[ \frac{1}{y_1} \frac{dy_1}{dx} = \cot x \cdot \frac{\sec^2 x}{\tan x} - \log(\tan x) \cdot \csc^2 x \] Rearranging gives: \[ \frac{dy_1}{dx} = y_1 \left( \cot x \cdot \frac{\sec^2 x}{\tan x} - \log(\tan x) \cdot \csc^2 x \right) \] 4. **Differentiate \( y_2 \)**: For \( y_2 = (\cot x)^{\tan x} \), similarly take the natural logarithm: \[ \log y_2 = \tan x \cdot \log(\cot x) \] Differentiate: \[ \frac{1}{y_2} \frac{dy_2}{dx} = \frac{d}{dx}(\tan x \cdot \log(\cot x)) \] Using the product rule: \[ \frac{d}{dx}(\tan x \cdot \log(\cot x)) = \tan x \cdot \frac{d}{dx}(\log(\cot x)) + \log(\cot x) \cdot \frac{d}{dx}(\tan x) \] Calculate \( \frac{d}{dx}(\log(\cot x)) \): \[ \frac{d}{dx}(\log(\cot x)) = -\frac{1}{\cot x} \cdot \csc^2 x = -\frac{\csc^2 x}{\cot x} \] Thus, \[ \frac{1}{y_2} \frac{dy_2}{dx} = \tan x \left(-\frac{\csc^2 x}{\cot x}\right) + \log(\cot x) \sec^2 x \] Rearranging gives: \[ \frac{dy_2}{dx} = y_2 \left( -\tan x \cdot \frac{\csc^2 x}{\cot x} + \log(\cot x) \sec^2 x \right) \] 5. **Combine the derivatives**: Finally, we combine \( \frac{dy_1}{dx} \) and \( \frac{dy_2}{dx} \): \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] ### Final Answer: The derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \left( (\tan x)^{\cot x} \left( \cot x \cdot \frac{\sec^2 x}{\tan x} - \log(\tan x) \cdot \csc^2 x \right) \right) + \left( (\cot x)^{\tan x} \left( -\tan x \cdot \frac{\csc^2 x}{\cot x} + \log(\cot x) \sec^2 x \right) \right) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

(tanx-cotx)^(2)

What is the derivative of (log_(tanx)cotx)(log_(cotx)tanx)^(-1) at x=(pi)/(4) ?

(1+cos4x)/(cotx-tanx)

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

Differentiate the following w.r.t. x : (tanx)^(cotx)+x^(tanx),0ltxltpi/4

If f(x)=(log_(cotx)tanx)(log_(tanx)cotx)^(-1) +tan^(-1)((4x)/(sqrt(4-x^(2)))) , then f'(0) is equal to

(d)/(dx)[tan^(-1)(cotx)+cot^(-1)(tanx)]=

(d)/(dx)((cotx-tanx)/(cotx+tanx))=

If y=(tanx+cotx)/(tanx-cotx)," then: "(dy)/(dx)=