Home
Class 12
MATHS
y=e^(sinx)+(tanx)^(x)...

`y=e^(sinx)+(tanx)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{\sin x} + (\tan x)^x \), we will differentiate it step by step. ### Step 1: Define the function Let: \[ y = e^{\sin x} + (\tan x)^x \] ### Step 2: Differentiate using the sum rule The derivative of a sum is the sum of the derivatives. Thus, we can write: \[ \frac{dy}{dx} = \frac{d}{dx}(e^{\sin x}) + \frac{d}{dx}((\tan x)^x) \] ### Step 3: Differentiate \( e^{\sin x} \) Using the chain rule: \[ \frac{d}{dx}(e^{\sin x}) = e^{\sin x} \cdot \frac{d}{dx}(\sin x) = e^{\sin x} \cdot \cos x \] ### Step 4: Differentiate \( (\tan x)^x \) To differentiate \( (\tan x)^x \), we can use logarithmic differentiation. Let: \[ y_2 = (\tan x)^x \] Taking the natural logarithm of both sides: \[ \ln y_2 = x \ln(\tan x) \] Now differentiate both sides with respect to \( x \): \[ \frac{1}{y_2} \frac{dy_2}{dx} = \ln(\tan x) + x \cdot \frac{1}{\tan x} \cdot \sec^2 x \] Thus: \[ \frac{dy_2}{dx} = y_2 \left( \ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x} \right) \] Substituting back \( y_2 = (\tan x)^x \): \[ \frac{dy_2}{dx} = (\tan x)^x \left( \ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x} \right) \] ### Step 5: Combine the derivatives Now, substituting back into the derivative of \( y \): \[ \frac{dy}{dx} = e^{\sin x} \cos x + (\tan x)^x \left( \ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x} \right) \] ### Final Result Thus, the derivative of \( y \) is: \[ \frac{dy}{dx} = e^{\sin x} \cos x + (\tan x)^x \left( \ln(\tan x) + x \cdot \frac{\sec^2 x}{\tan x} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y = x^(sinx).(tanx)^(x)

y=(sinx)^(tanx)+(cosx)^(secx)

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=(sinx)^(tanx),then(dy)/(dx) is equal to

If y=(e^(x)-tanx)/(x^(n)+cotx) , then find (dy)/(dx)

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

If y=(log)_(sinx)(tanx) , then (((dy)/(dx)))_(pi//4) is equal to.......