Home
Class 12
MATHS
y=x^(sinx)+a^(sinx)...

`y=x^(sinx)+a^(sinx)`

Text Solution

Verified by Experts

The correct Answer is:
`x^(sinx)[sinx/x+cosxcdotlogx]+a^(sinx)logacdotcosx`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=x^(sinx)+(sinx)^(cosx)

x^(sinx)+(sinx)^(x)

If y=(sinx)^((sinx)^((sinx)...oo))," prove that "(dy)/(dx)=(y^(2)cotx)/((1-ylog sinx)).

If y=(sinx)^(sinx)^(((sinx)dotoo)) , then (dy)/(dx) is equal to.........

intx^(sinx) ((sinx)/x+cosxdotlogx) dx is equal to (A) x^(sinx)+C (B) x^(sinx)cosx+C (C) ((x^(sinx))^2)/2+C (D) none of these

Differentiate x^(x)+(sinx)^(sinx) with respect to 'x'.

y = x^(sinx).(tanx)^(x)

The rang of y=(|sinx|)/(1+|sinx|) is

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

y=e^(sinx)+(tanx)^(x)