Home
Class 12
MATHS
y=sinxcdotsin2xcdotsin4xcdotsin8x...

`y=sinxcdotsin2xcdotsin4xcdotsin8x`

Text Solution

Verified by Experts

The correct Answer is:
`sinxcdot sin2xsin4xcdot sin8x[cotx+2cot2x+4cot4x+8cot8x]`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

2x+4y-8xy-1

The equation of the circle passing through the point of intersection of the circles x^(2)+y^(2)-4x-2y=8 and x^(2)+y^(2)-2x-4y=8 and (-1,4) is (a)x^(2)+y^(2)+4x+4y-8=0(b)x^(2)+y^(2)-3x+4y+8=0(c)x^(2)+y^(2)+x+y=0(d)x^(2)+y^(2)-3x-3y-8=0

The sum of the ordinates of point of contacts of the common tangent to the parabolas y=x^(2)+4x+8 and y=x^(2)+8x+4 is

Find the equation of the circle passing through the centre of the circle x^2 +y^2 -4x-6y=8 and being concentric with the circle x^2 +y^2 - 2x-8y=5 .

The angles between the straight lines joining the origin to the points common to 7x^(2)+8y^(2)-4xy+2x-4y-8=0 and 3x-y=2 is:

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

The locus of the centre of all circles passing through (2, 4) and cutting x^2 + y^2 = 1 orthogonally is : (A) 4x+8y = 11 (B) 4x+8y=21 (C) 8x+4y=21 (D) 4x-8y=21

The parabola with directrix x+2y-1=0 and focus is (1,0) is (A) 4x^(2)+4xy+y^(2)+8x-4y+4=0 (B) 4x^(2)+4xy+y^(2)-8x+4y+4=0 (C) 4x^(2)-4xy+y^(2)-8x-4y+4=0 (D) 4x^(2)-4xy+y^(2)-8x+4y+4=0

The point of tangency of the circles x^(2)+y^(2)-2x-4y=0 and x^(2)+y^(2)-8y-4=0 is

The locus of a point "P" ,if the join of the points (2,3) and (-1,5) subtends right angle at "P" is x^(2)+y^(2)-x-8y+13=0 x^(2)-y^(2)-x+8y+3=0 x^(2)+y^(2)-4x-4y=0,(x,y)!=(0,4)&(4,0) x^(2)+y^(2)-x-8y+13=0,(x,y)!=(2,3)&(-1,5)