Home
Class 12
MATHS
y=sqrt((x^(2)+x+1)/(x^(2)-x+1))...

`y=sqrt((x^(2)+x+1)/(x^(2)-x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \sqrt{\frac{x^2 + x + 1}{x^2 - x + 1}}, \] we can follow these steps: ### Step 1: Rewrite the function We can rewrite the function as: \[ y = \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)^{\frac{1}{2}}. \] ### Step 2: Apply the logarithmic differentiation Taking the natural logarithm of both sides gives: \[ \log y = \frac{1}{2} \left( \log(x^2 + x + 1) - \log(x^2 - x + 1) \right). \] ### Step 3: Differentiate both sides Differentiating both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \left( \frac{2x + 1}{x^2 + x + 1} - \frac{2x - 1}{x^2 - x + 1} \right). \] ### Step 4: Multiply by \( y \) Now, multiply both sides by \( y \): \[ \frac{dy}{dx} = y \cdot \frac{1}{2} \left( \frac{2x + 1}{x^2 + x + 1} - \frac{2x - 1}{x^2 - x + 1} \right). \] ### Step 5: Substitute \( y \) Substituting back \( y = \sqrt{\frac{x^2 + x + 1}{x^2 - x + 1}} \): \[ \frac{dy}{dx} = \sqrt{\frac{x^2 + x + 1}{x^2 - x + 1}} \cdot \frac{1}{2} \left( \frac{2x + 1}{x^2 + x + 1} - \frac{2x - 1}{x^2 - x + 1} \right). \] ### Step 6: Simplify the expression Now, we simplify the expression inside the parentheses: \[ \frac{dy}{dx} = \sqrt{\frac{x^2 + x + 1}{x^2 - x + 1}} \cdot \frac{1}{2} \left( \frac{(2x + 1)(x^2 - x + 1) - (2x - 1)(x^2 + x + 1)}{(x^2 + x + 1)(x^2 - x + 1)} \right). \] ### Step 7: Final expression After simplification, we can express \( \frac{dy}{dx} \) as: \[ \frac{dy}{dx} = \sqrt{\frac{x^2 + x + 1}{x^2 - x + 1}} \cdot \frac{1}{2} \cdot \frac{(2x^3 + 2x^2 + 2x - 2x^2 - 2x + 1) - (2x^3 + 2x^2 + 2x - x^2 - x - 1)}{(x^2 + x + 1)(x^2 - x + 1)}. \] This leads to the final expression for \( \frac{dy}{dx} \).
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is

Let y=sqrt(2/(x^(2)-x+1)-1/(x+1)-(2x+1)/(x^(3)+1)) , find all the real values of x for which y takes real values.

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))