Home
Class 12
MATHS
y=((x+1)^(2)cdot sqrt(x-1))/((x+3)^(3)e^...

`y=((x+1)^(2)cdot sqrt(x-1))/((x+3)^(3)e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = \frac{(x+1)^2 \sqrt{x-1}}{(x+3)^3 e^x}, \] we will use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides Taking the natural logarithm helps simplify the differentiation process: \[ \ln y = \ln\left(\frac{(x+1)^2 \sqrt{x-1}}{(x+3)^3 e^x} \right). \] ### Step 2: Apply the properties of logarithms Using the properties of logarithms, we can separate the terms: \[ \ln y = \ln((x+1)^2) + \ln(\sqrt{x-1}) - \ln((x+3)^3) - \ln(e^x). \] This simplifies to: \[ \ln y = 2 \ln(x+1) + \frac{1}{2} \ln(x-1) - 3 \ln(x+3) - x. \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides using implicit differentiation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+3} - 1. \] ### Step 4: Solve for \( \frac{dy}{dx} \) Multiply both sides by \( y \) to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+3} - 1 \right). \] ### Step 5: Substitute back for \( y \) Now substitute back the expression for \( y \): \[ \frac{dy}{dx} = \frac{(x+1)^2 \sqrt{x-1}}{(x+3)^3 e^x} \left( \frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+3} - 1 \right). \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{(x+1)^2 \sqrt{x-1}}{(x+3)^3 e^x} \left( \frac{2}{x+1} + \frac{1}{2(x-1)} - \frac{3}{x+3} - 1 \right). \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when: y=((x+1)^(2)sqrt(x-1))/((x+4)^(3).e^(x))

e^((x-1)-(1)/(2)(x-1)^(2)+((x-1)^(3))/(3)-((x-1)^(4))/(4)+...cdots) is eqaul to

Solve the differential equation _(y-3)(dy)/(dx)=((x+1)^(2)+(y-3)^(2)e^((y-3)/(x-1)))/((xy-3x+y-3)e^(x+1))

(d)/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]=(1)/(2(1+x)sqrt(x)) (b) (3)/((1+x)sqrt(x))(2)/((1+x)sqrt(x)) (d) (3)/(2(1+x)sqrt(x))

Applying logrithmic differentiation find the derivatives of the following functions (a) y=(cos x)^(sin x) (b) y=((3 sqrt(sin 3x))/(1-sin 3x)) (c ) y=sqrt(x-1)/((3sqrt(x+2))^(2)(sqrt(x+3))^(3))

Show that: (x^((2)/(3))sqrt(y^(-2)))/(y^(2)sqrt(x^(-2)))times(y^(2)sqrt(x^(-2)))/(sqrt(x^((4)/(3))))=(1)/(y)

If sqrt(1-x^(6))+sqrt(1-y^(6))=a(x^(3)-y^(3)), then prove that (dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/(1-x^(6)))

Let f(x)+f(y)=f(x sqrt(1-y^(2))+y sqrt(1-x^(2)))[f(x) is not identically zerol.Then f(4x^(3)-3x)+3f(x)=0f(4x^(3)-3x)=3f(x)f(2x sqrt(1-x^(2))+2f(x)=0f(2x sqrt(1-x^(2))=2f(x)

The value of f(x,y)=((x^(3)y)^((1)/(4))-(y^(3)x)^((1)/(4)))/(sqrt(y)-sqrt(x))+(1+sqrt(xy))/((xy)^((1)/(4)))xx((1+2sqrt((y)/(x))+(y)/(x))^(4) when x=9 and y=0.04