Home
Class 12
MATHS
y=(x+1)^(2)(x+2)^(3)(x+3)^(4)...

`y=(x+1)^(2)(x+2)^(3)(x+3)^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (x+1)^2 (x+2)^3 (x+3)^4 \), we will use logarithmic differentiation. Here’s the step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of \( y \): \[ \ln y = \ln \left( (x+1)^2 (x+2)^3 (x+3)^4 \right) \] ### Step 2: Apply the properties of logarithms Using the properties of logarithms, we can expand the right-hand side: \[ \ln y = 2 \ln(x+1) + 3 \ln(x+2) + 4 \ln(x+3) \] ### Step 3: Differentiate both sides with respect to \( x \) Now, we differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = 2 \cdot \frac{1}{x+1} + 3 \cdot \frac{1}{x+2} + 4 \cdot \frac{1}{x+3} \] ### Step 4: Multiply both sides by \( y \) To isolate \( \frac{dy}{dx} \), we multiply both sides by \( y \): \[ \frac{dy}{dx} = y \left( 2 \cdot \frac{1}{x+1} + 3 \cdot \frac{1}{x+2} + 4 \cdot \frac{1}{x+3} \right) \] ### Step 5: Substitute back for \( y \) Now we substitute back the expression for \( y \): \[ \frac{dy}{dx} = (x+1)^2 (x+2)^3 (x+3)^4 \left( 2 \cdot \frac{1}{x+1} + 3 \cdot \frac{1}{x+2} + 4 \cdot \frac{1}{x+3} \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (x+1)^2 (x+2)^3 (x+3)^4 \left( \frac{2}{x+1} + \frac{3}{x+2} + \frac{4}{x+3} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=1-x+(x^(2))/(2!)-(x^(3))/(3!)+(x^(4))/(4!)longrightarrow oo then write (d^(2)y)/(dx^(2)) in terms of y

If 0 lt x lt 1 and y=(1)/(2) x^(2) +(2)/(3) x^(3) +(3)/(4) x^(4) + ……. , then the vlaue of e^(1+y) at x=(1)/(2) is :

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+...oo, then find the value of (dy)/(dx) .

Find the products: 2x+3y)(2x-3y)(x-1)(x+1)(x^(2)+1)(x^(4)+1)

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

If y = 1 - x +(x^(2))/(2!) - (x^(3))/(3!) + (x^(4))/(4!) - ..., " then" (d^(2) y)/(dx^(2)) is equal to

If the circle x^(2)+y^(2)=a^(2) intersects the hyperbola xy=c^(2) at four points P(x_(1),y_(1)),Q(x_(2),y_(2)),R(x_(3),y_(3)), and S(x_(4),y_(4)), then x_(1)+x_(2)+x_(3)+x_(4)=0y_(1)+y_(2)+y_(3)+y_(4)=0x_(1)x_(2)x_(3)x_(4)=C^(4)y_(1)y_(2)y_(3)y_(4)=C^(4)

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))