Home
Class 12
MATHS
y=tanxtan2xtan3xtan4x...

`y=tanxtan2xtan3xtan4x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = \tan x \tan 2x \tan 3x \tan 4x \). We can use logarithmic differentiation to simplify the process. Here’s a step-by-step solution: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \log y = \log(\tan x \tan 2x \tan 3x \tan 4x) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \( \log(mn) = \log m + \log n \), we can rewrite the right-hand side: \[ \log y = \log(\tan x) + \log(\tan 2x) + \log(\tan 3x) + \log(\tan 4x) \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \( x \): \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\log(\tan x)) + \frac{d}{dx}(\log(\tan 2x)) + \frac{d}{dx}(\log(\tan 3x)) + \frac{d}{dx}(\log(\tan 4x)) \] ### Step 4: Apply the chain rule Using the chain rule, the derivative of \( \log(\tan kx) \) is: \[ \frac{d}{dx}(\log(\tan kx)) = \frac{1}{\tan kx} \cdot \sec^2(kx) \cdot k \] Thus, we have: \[ \frac{d}{dx}(\log(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x \cdot 1 \] \[ \frac{d}{dx}(\log(\tan 2x)) = \frac{1}{\tan 2x} \cdot \sec^2(2x) \cdot 2 \] \[ \frac{d}{dx}(\log(\tan 3x)) = \frac{1}{\tan 3x} \cdot \sec^2(3x) \cdot 3 \] \[ \frac{d}{dx}(\log(\tan 4x)) = \frac{1}{\tan 4x} \cdot \sec^2(4x) \cdot 4 \] ### Step 5: Combine the derivatives Now we can combine these results: \[ \frac{1}{y} \frac{dy}{dx} = \frac{\sec^2 x}{\tan x} + \frac{2 \sec^2(2x)}{\tan 2x} + \frac{3 \sec^2(3x)}{\tan 3x} + \frac{4 \sec^2(4x)}{\tan 4x} \] ### Step 6: Solve for \( \frac{dy}{dx} \) Multiplying both sides by \( y \): \[ \frac{dy}{dx} = y \left( \frac{\sec^2 x}{\tan x} + \frac{2 \sec^2(2x)}{\tan 2x} + \frac{3 \sec^2(3x)}{\tan 3x} + \frac{4 \sec^2(4x)}{\tan 4x} \right) \] ### Step 7: Substitute back for \( y \) Substituting \( y = \tan x \tan 2x \tan 3x \tan 4x \): \[ \frac{dy}{dx} = \tan x \tan 2x \tan 3x \tan 4x \left( \frac{\sec^2 x}{\tan x} + \frac{2 \sec^2(2x)}{\tan 2x} + \frac{3 \sec^2(3x)}{\tan 3x} + \frac{4 \sec^2(4x)}{\tan 4x} \right) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \tan x \tan 2x \tan 3x \tan 4x \left( \frac{\sec^2 x}{\tan x} + \frac{2 \sec^2(2x)}{\tan 2x} + \frac{3 \sec^2(3x)}{\tan 3x} + \frac{4 \sec^2(4x)}{\tan 4x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate tanxtan2xtan3xtan4x in two ways : (i) by taking logarithums and (ii) by repeatedly applying product rule.

tan5xtan3xtan2x=?

inttanxtan2xtan3xdx

Total number of solution of tan3x-tan2x-tan3xtan2x=1 in [0,2pi] is equal to

Let f(x)=tan x tan2x+tan2x tan4x+tan4xtan x where x=(2 pi)/(7). Find |f(x)+3|

inttan2xtan3xtan5xdx=

STATEMENT-1 : int tan5xtan3xtan2xdx is equal to (log|sec5x|)/(5)-(log|sec3x|)/(3)-(log|sec2x|)/(2)+c and STATEMENT-2: tan5x-tan3x-tan2x=tan5xtan3xtan2x .

inttan2xtan5xtan7xdx

inttan(x-theta)tan2xtan(x+theta)dx

Solve: tan^(2)x.tan^(2)3x.tan4x=tan^(2)x-tan^(2)3x+tan4x