Home
Class 12
MATHS
(i) x^(y)cdoty^(x)=1 (ii) y=e^(x^(x))...

(i) `x^(y)cdoty^(x)=1` (ii) `y=e^(x^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will analyze each part separately. ### Part (i): \( x^y \cdot y^x = 1 \) 1. **Take the logarithm of both sides**: \[ \log(x^y \cdot y^x) = \log(1) \] Since \(\log(1) = 0\), we have: \[ \log(x^y) + \log(y^x) = 0 \] 2. **Use logarithmic identities**: \[ y \log x + x \log y = 0 \] 3. **Differentiate both sides with respect to \(x\)**: Using implicit differentiation: \[ \frac{d}{dx}(y \log x) + \frac{d}{dx}(x \log y) = 0 \] - For the first term, apply the product rule: \[ \frac{dy}{dx} \log x + y \cdot \frac{1}{x} \] - For the second term, again apply the product rule: \[ \log y + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} \] Combining these, we get: \[ \frac{dy}{dx} \log x + \frac{y}{x} + \log y + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} = 0 \] 4. **Rearranging the equation**: \[ \left(\log x + \frac{x}{y}\right) \frac{dy}{dx} = -\left(\frac{y}{x} + \log y\right) \] 5. **Solve for \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = -\frac{\frac{y}{x} + \log y}{\log x + \frac{x}{y}} \] ### Part (ii): \( y = e^{x^x} \) 1. **Take the logarithm of both sides**: \[ \log y = x^x \] 2. **Differentiate both sides with respect to \(x\)**: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(x^x) \] To differentiate \(x^x\), we can use the identity \(x^x = e^{x \log x}\): \[ \frac{d}{dx}(x^x) = e^{x \log x} \left(\log x + 1\right) = x^x (\log x + 1) \] 3. **Substituting back**: \[ \frac{1}{y} \frac{dy}{dx} = x^x (\log x + 1) \] 4. **Solve for \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = y \cdot x^x (\log x + 1) \] 5. **Substituting \(y\) back**: Since \(y = e^{x^x}\), we have: \[ \frac{dy}{dx} = e^{x^x} \cdot x^x (\log x + 1) \] ### Final Answers: 1. For part (i): \[ \frac{dy}{dx} = -\frac{\frac{y}{x} + \log y}{\log x + \frac{x}{y}} \] 2. For part (ii): \[ \frac{dy}{dx} = e^{x^x} \cdot x^x (\log x + 1) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate with respect to X (i) y=xlnx " " (ii) y=x^(2)e^(x) " " (iii) y=(sin x)/(x) " " (iv) y=(3x^(2)+2sqrt(x))/(x)

Find the differential equation: (i) e^(x)+ce^(y)=1(ii)y=2(x^(2)-1)+ce^(-x^(2)))

Find dervatives of the following functions: (i) y=2x^(3) , (ii) y=4/x , (iii) y=3e^(x) , (iv) y=6 ln x , (v) y=5 sin x

Find differentiation of y w.r.t x. (i) y=x^(2)-6x (ii) y=x^(5)+2e^(x) (iii) y=4 ln x +cos x

Find differentiation of y w.r.t x. (i) y=(sin x)/x , (ii) y=(4x^(3))/e^(x)

Find first derivative of y w.r.t. x. (i) y=e^(-x) , (ii) y=4 sin 3x , (iii) y=4e^(x^(2)-2x)

Solution of the differential equation (dx)/(dy)-(x In x)/(1+In x)=(e^(y))/(1+In x) if y(1)=0 is (A) x^(x)=r^(yc^(g))(B)e^(y)=x^(e^(j))(C)x=ye^(y)(D)y=e^(x^(y))

The equation of one of the curves whose slope of tangent at any point is equal to y+2x is (A) y=2(e^(x)+x-1) (B) y=2(e^(x)-x-1) (C) y=2(e^(x)-x+1) (D) y=2(e^(x)+x+1)