Home
Class 12
MATHS
(i) y=e^(x)sin^(3)xcos^(4)x (ii) y=x*e^(...

(i) `y=e^(x)sin^(3)xcos^(4)x` (ii) `y=x*e^(xsinx)`

Text Solution

Verified by Experts

The correct Answer is:
(i) `e^(x)sin^(3)xcos^(4)x[1+3cotx-4tanx]` (ii) `e^(xsinx)(xcosx+sinx)`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5j|14 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5g|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=e^(sin x^(3))

y=e^(sin x^(3))

y=e^(3x).sin^(2)x.logx

Solve: (dy)/(dx)=(1)/(sin^(4)x+cos^(4)x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x))

Find first derivative of y w.r.t. x. (i) y=e^(-x) , (ii) y=4 sin 3x , (iii) y=4e^(x^(2)-2x)

y=log[sin^(3)x.cos^(4)x.(x^(2)-1)^(5)]

Find (dy)/(dx) , when: y=e^(x)sin^(3)xcos^(4)x

(i) int e^(3x) cos 5x dx (ii) int e^(3x) sin 4x dx

Find differentiation of y w.r.t x. (i) y=(sin x)/x , (ii) y=(4x^(3))/e^(x)

If y=sin^(2)x.cos^(3)x, then (dy)/(dx)