Home
Class 12
MATHS
x=a(cos t + log tan (t/2)), y =a sin t t...

`x=a(cos t + log tan (t/2)), y =a sin t` then find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) for the given parametric equations \( x = a(\cos t + \log(\tan(t/2))) \) and \( y = a \sin t \), we will use the chain rule for derivatives. ### Step 1: Differentiate \( x \) with respect to \( t \) Given: \[ x = a(\cos t + \log(\tan(t/2))) \] We differentiate \( x \) with respect to \( t \): \[ \frac{dx}{dt} = a\left(-\sin t + \frac{d}{dt} \log(\tan(t/2))\right) \] To differentiate \( \log(\tan(t/2)) \), we use the chain rule: \[ \frac{d}{dt} \log(\tan(t/2)) = \frac{1}{\tan(t/2)} \cdot \frac{d}{dt}(\tan(t/2)) \] Using the derivative of \( \tan(t/2) \): \[ \frac{d}{dt}(\tan(t/2)) = \frac{1}{2} \sec^2(t/2) \] Thus, \[ \frac{d}{dt} \log(\tan(t/2)) = \frac{1}{\tan(t/2)} \cdot \frac{1}{2} \sec^2(t/2) = \frac{1}{2} \frac{\sec^2(t/2)}{\tan(t/2)} \] Now substituting this back into the derivative of \( x \): \[ \frac{dx}{dt} = a\left(-\sin t + \frac{1}{2} \frac{\sec^2(t/2)}{\tan(t/2)}\right) \] ### Step 2: Differentiate \( y \) with respect to \( t \) Given: \[ y = a \sin t \] We differentiate \( y \) with respect to \( t \): \[ \frac{dy}{dt} = a \cos t \] ### Step 3: Find \( \frac{dy}{dx} \) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{a \cos t}{a\left(-\sin t + \frac{1}{2} \frac{\sec^2(t/2)}{\tan(t/2)}\right)} \] The \( a \) cancels out: \[ \frac{dy}{dx} = \frac{\cos t}{-\sin t + \frac{1}{2} \frac{\sec^2(t/2)}{\tan(t/2)}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\cos t}{-\sin t + \frac{1}{2} \frac{\sec^2(t/2)}{\tan(t/2)}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=a (cos t +log (tan ((t)/(2)) )) ,y =a sin t ,then (dy)/(dx) =

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

If x=a(cos t+(log tan)(1)/(2)),y=a sin t then (dy)/(dx) is equal to

If x=a(cos t+(log tan t)/(2)),y=a sin t evaluate (d^(2)y)/(dx^(2)) at t=(pi)/(3)

If y=a sin t, x=a cos t then find (dy)/(dx) .

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2))a=(pi)/(4)

If x=a cos^3 t " and "y=a sin ^3 t "then find " dy/dx

If x=a(t+sin t),y=a(1+cos t), then find (dy/dx)