Home
Class 12
MATHS
x=2 cos^2 t, y= 6 sin ^2 t...

`x=2 cos^2 t, y= 6 sin ^2 t `

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = 2 \cos^2 t\) and \(y = 6 \sin^2 t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = 2 \cos^2 t \] Using the chain rule, we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = 2 \cdot 2 \cos t \cdot (-\sin t) = -4 \cos t \sin t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = 6 \sin^2 t \] Using the chain rule, we differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = 6 \cdot 2 \sin t \cdot \cos t = 12 \sin t \cos t \] ### Step 3: Find \(\frac{dy}{dx}\) Using the formula for derivatives of parametric equations: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{12 \sin t \cos t}{-4 \cos t \sin t} \] ### Step 4: Simplify the expression Notice that \(\sin t\) and \(\cos t\) can be canceled out (assuming \(\sin t \neq 0\) and \(\cos t \neq 0\)): \[ \frac{dy}{dx} = \frac{12}{-4} = -3 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -3 \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=sin tcos 2t,y= cos tsin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)

x=a cos t,y=a sin t then (d^(2)(y))/(dx^(2)) at t=(pi)/(3),(pi)/(6),(pi)/(2),(pi)/(4)

The curve is given by x = cos 2t, y = sin t represents

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t , then the value of |(d^(2) y)/(dx^(2))|_(t= pi//2 ) is

If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)

The distance, from the origin, of the normal to the curve, x = 2 cos t + 2t sin t, y = 2 sin t - 2t "cos t at t" = (pi)/(4) , is :