Home
Class 12
MATHS
x=sqrt(sin 2t),y=sqrt(cos 2 t)...

`x=sqrt(sin 2t),y=sqrt(cos 2 t)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = \sqrt{\sin(2t)}\) and \(y = \sqrt{\cos(2t)}\), we will use the chain rule and the derivatives with respect to the parameter \(t\). ### Step-by-Step Solution: 1. **Differentiate \(x\) with respect to \(t\)**: \[ x = \sqrt{\sin(2t)} = (\sin(2t))^{1/2} \] Using the chain rule: \[ \frac{dx}{dt} = \frac{1}{2} (\sin(2t))^{-1/2} \cdot \frac{d}{dt}(\sin(2t)) \] The derivative of \(\sin(2t)\) is \(2\cos(2t)\): \[ \frac{dx}{dt} = \frac{1}{2} (\sin(2t))^{-1/2} \cdot 2\cos(2t) = \frac{\cos(2t)}{\sqrt{\sin(2t)}} \] 2. **Differentiate \(y\) with respect to \(t\)**: \[ y = \sqrt{\cos(2t)} = (\cos(2t))^{1/2} \] Again, using the chain rule: \[ \frac{dy}{dt} = \frac{1}{2} (\cos(2t))^{-1/2} \cdot \frac{d}{dt}(\cos(2t)) \] The derivative of \(\cos(2t)\) is \(-2\sin(2t)\): \[ \frac{dy}{dt} = \frac{1}{2} (\cos(2t))^{-1/2} \cdot (-2\sin(2t)) = -\frac{\sin(2t)}{\sqrt{\cos(2t)}} \] 3. **Find \(\frac{dy}{dx}\)** using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substitute the derivatives we found: \[ \frac{dy}{dx} = \frac{-\frac{\sin(2t)}{\sqrt{\cos(2t)}}}{\frac{\cos(2t)}{\sqrt{\sin(2t)}}} \] Simplifying this gives: \[ \frac{dy}{dx} = -\frac{\sin(2t)}{\sqrt{\cos(2t)}} \cdot \frac{\sqrt{\sin(2t)}}{\cos(2t)} = -\frac{\sin(2t) \cdot \sqrt{\sin(2t)}}{\cos(2t) \cdot \sqrt{\cos(2t)}} \] 4. **Express \(\frac{dy}{dx}\) in terms of tangent**: Recognizing that \(\tan(2t) = \frac{\sin(2t)}{\cos(2t)}\), we can write: \[ \frac{dy}{dx} = -\tan(2t) \cdot \sqrt{\frac{\sin(2t)}{\cos(2t)}} = -\tan(2t) \cdot \sqrt{\tan(2t)} \] Thus, we have: \[ \frac{dy}{dx} = -\tan(2t) \cdot \sqrt{\tan(2t)} \] ### Final Answer: \[ \frac{dy}{dx} = -\tan(2t) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(a^(sin-1)t),y=sqrt(a^(cos-1)t) then show that (dy)/(dx)=-(y)/(x)

Find (dy)/(dx) if: x=a(cos t+(1)/(2)ln tan^(2)(t)/(2)) and y=a sin t.x=sin t sqrt(cos2t) and y=cost sqrt(cos2t)

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos^(-1)t)) show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^sin^((-1)t)) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x .

Which one of the following equation represent parametric equation to a parabolic curve? x=3cos t;y=4sin tx^(2)-2=2cos t;y=4cos^(2)(t)/(2)sqrt(x)=tan t;sqrt(y)=sec tx=sqrt(1-sin t;)y=sin(t)/(2)+cos(t)/(2)

If quad sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t),a>0 and |t|<1 then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t)a>0 and -1

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t))