Home
Class 12
MATHS
x= 2 cos t -cos 2t ,y=2 sin t-sin 2t ...

`x= 2 cos t -cos 2t ,y=2 sin t-sin 2t ` Find d y / d x

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = 2 \cos t - \cos 2t\) and \(y = 2 \sin t - \sin 2t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start by differentiating \(x\): \[ x = 2 \cos t - \cos 2t \] Using the chain rule, we differentiate: \[ \frac{dx}{dt} = \frac{d}{dt}(2 \cos t) - \frac{d}{dt}(\cos 2t) \] Calculating each derivative: \[ \frac{d}{dt}(2 \cos t) = -2 \sin t \] \[ \frac{d}{dt}(\cos 2t) = -2 \sin 2t \] Thus, we have: \[ \frac{dx}{dt} = -2 \sin t + 2 \sin 2t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we differentiate \(y\): \[ y = 2 \sin t - \sin 2t \] Using the chain rule again, we differentiate: \[ \frac{dy}{dt} = \frac{d}{dt}(2 \sin t) - \frac{d}{dt}(\sin 2t) \] Calculating each derivative: \[ \frac{d}{dt}(2 \sin t) = 2 \cos t \] \[ \frac{d}{dt}(\sin 2t) = 2 \cos 2t \] Thus, we have: \[ \frac{dy}{dt} = 2 \cos t - 2 \cos 2t \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{2 \cos t - 2 \cos 2t}{-2 \sin t + 2 \sin 2t} \] We can simplify this by factoring out the common factor of 2: \[ \frac{dy}{dx} = \frac{2(\cos t - \cos 2t)}{2(-\sin t + \sin 2t)} = \frac{\cos t - \cos 2t}{-\sin t + \sin 2t} \] ### Step 4: Final Expression Thus, the final expression for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos t - \cos 2t}{\sin 2t - \sin t} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

x=a cos t, y=b sin t

If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t , then the value of |(d^(2) y)/(dx^(2))|_(t= pi//2 ) is

If x=2cos t-cos2t,quad y=2sin t-sin2t find (d^(2)y)/(dx^(2)) at t=(pi)/(2)

If x=2cos t-cos2t,y=2sin t-sin2t,tind(d^(2)y)/(dx^(2)) at t=(pi)/(2)

x=2 cos^2 t, y= 6 sin ^2 t

If x=2cost-cos2t,y=2sint-sin2t," then "(dy)/(dx)=

If x= 2cost+cos 2t,y=2sin t-sin 2t ,then " at " t= ( pi)/(4) ,(dy)/(dx)

If x=2cost-cos2t & y=2sint-sin2t , find the value of (d^2y//dx^2) when t=(pi//2) .

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

x=a sin 2t(1+cccos 2t ),y=b cos2 t (1-cos 2t) find dy/dx