Home
Class 12
MATHS
x=a sin 2t(1+cccos 2t ),y=b cos2 t (1-co...

`x=a sin 2t(1+cccos 2t ),y=b cos2 t (1-cos 2t)` find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = a \sin 2t (1 + \cos 2t)\) and \(y = b \cos 2t (1 - \cos 2t)\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = a \sin 2t (1 + \cos 2t) \] Using the product rule: \[ \frac{dx}{dt} = a \left( \frac{d}{dt}(\sin 2t) \cdot (1 + \cos 2t) + \sin 2t \cdot \frac{d}{dt}(1 + \cos 2t) \right) \] Calculating the derivatives: - \(\frac{d}{dt}(\sin 2t) = 2 \cos 2t\) - \(\frac{d}{dt}(1 + \cos 2t) = -2 \sin 2t\) Substituting these into the equation: \[ \frac{dx}{dt} = a \left( 2 \cos 2t (1 + \cos 2t) + \sin 2t (-2 \sin 2t) \right) \] \[ = a \left( 2 \cos 2t + 2 \cos^2 2t - 2 \sin^2 2t \right) \] Using the identity \(\cos^2 2t - \sin^2 2t = \cos 4t\): \[ \frac{dx}{dt} = 2a \cos 2t \cdot \cos 4t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = b \cos 2t (1 - \cos 2t) \] Using the product rule: \[ \frac{dy}{dt} = b \left( \frac{d}{dt}(\cos 2t) \cdot (1 - \cos 2t) + \cos 2t \cdot \frac{d}{dt}(1 - \cos 2t) \right) \] Calculating the derivatives: - \(\frac{d}{dt}(\cos 2t) = -2 \sin 2t\) - \(\frac{d}{dt}(1 - \cos 2t) = 2 \sin 2t\) Substituting these into the equation: \[ \frac{dy}{dt} = b \left( -2 \sin 2t (1 - \cos 2t) + \cos 2t (2 \sin 2t) \right) \] \[ = b \left( -2 \sin 2t + 2 \sin 2t \cos 2t + 2 \sin 2t \cos 2t \right) \] \[ = 2b \sin 2t \cos 2t \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{2b \sin 2t \cos 2t}{2a \cos 2t \cos 4t} \] Simplifying: \[ \frac{dy}{dx} = \frac{b \sin 2t}{a \cos 4t} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{b \sin 2t}{a \cos 4t} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)

If x = a sin 2t(1 + cos 2t) and y = b cos 2 t(1 – cos 2 t), show that ((d y)/(d x))_(at t =pi/4)=b/a.

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t) , then show that ((dy)/(dx))_(t=pi//4) = (b)/(a) .

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), show that at (pi)/(4),(dy)/(dx)=(b)/(a)

If x=10(t-sin t),y=12(1-cos t), find (dy)/(dx)

x = "sin" t, y = "cos" 2t

If x=a sin t and y=a(cos t+(log tan t)/(2)) find (d^(2)y)/(dx^(2))

If x=a(t+sin t),y=a(1+cos t), then find (dy/dx)