Home
Class 12
MATHS
x=3sin t-2 sin ^3t, y=3 cos t -2cos^3tth...

`x=3sin t-2 sin ^3t, y=3 cos t -2cos^3t`then find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = 3\sin t - 2\sin^3 t\) and \(y = 3\cos t - 2\cos^3 t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start by differentiating \(x\) with respect to \(t\): \[ x = 3\sin t - 2\sin^3 t \] Using the chain rule, we differentiate: \[ \frac{dx}{dt} = 3\cos t - 2 \cdot 3\sin^2 t \cdot \frac{d}{dt}(\sin t) \] This simplifies to: \[ \frac{dx}{dt} = 3\cos t - 6\sin^2 t \cos t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we differentiate \(y\): \[ y = 3\cos t - 2\cos^3 t \] Again, using the chain rule: \[ \frac{dy}{dt} = -3\sin t + 2 \cdot 3\cos^2 t \cdot (-\sin t) \] This simplifies to: \[ \frac{dy}{dt} = -3\sin t + 6\cos^2 t \sin t \] ### Step 3: Find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the formula: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{-3\sin t + 6\cos^2 t \sin t}{3\cos t - 6\sin^2 t \cos t} \] ### Step 4: Simplify the expression We can factor out \(\sin t\) from the numerator and \(\cos t\) from the denominator: \[ \frac{dy}{dx} = \frac{\sin t(-3 + 6\cos^2 t)}{\cos t(3 - 6\sin^2 t)} \] This can be further simplified: \[ \frac{dy}{dx} = \frac{\sin t(6\cos^2 t - 3)}{\cos t(3 - 6\sin^2 t)} \] Using the identity \(6\cos^2 t - 3 = 3(2\cos^2 t - 1) = 3\cos(2t)\) and \(3 - 6\sin^2 t = 3(1 - 2\sin^2 t) = 3\cos(2t)\): \[ \frac{dy}{dx} = \frac{\sin t \cdot 3\cos(2t)}{\cos t \cdot 3\cos(2t)} \] The \(3\cos(2t)\) cancels out (assuming \(\cos(2t) \neq 0\)): \[ \frac{dy}{dx} = \frac{\sin t}{\cos t} = \tan t \] ### Final Result Thus, we have: \[ \frac{dy}{dx} = \tan t \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=3sin t-sin3t,y=3cos t-cos3t, find (dy)/(dx) at t=(pi)/(3)

If y=a sin t, x=a cos t then find (dy)/(dx) .

x=a sin 2t(1+cccos 2t ),y=b cos2 t (1-cos 2t) find dy/dx

If x=a(t+sin t),y=a(1+cos t), then find (dy/dx)

If x =3 cos t-2cos ^(3) t,y =3 sin t- 2 sin ^(3) t,then (dy)/(dx) =

If x=a (t+sin t) and y=a(1-cos t ) then find dy/dx .

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

If x=a cos^3 t " and "y=a sin ^3 t "then find " dy/dx

If x=e^(sin 3t), y=e^(cos,3t),then (dy)/(dx)=

If x=e^(sin 3t) y= e ^(cos , 3t) ,then (dy)/(dx)=