Home
Class 12
MATHS
x=e^t (sin t + cos t ),y=e^t(sin t -cos ...

`x=e^t (sin t + cos t ),y=e^t(sin t -cos t)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given parametric equations \(x = e^t (\sin t + \cos t)\) and \(y = e^t (\sin t - \cos t)\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start by differentiating \(x\): \[ x = e^t (\sin t + \cos t) \] Using the product rule, we have: \[ \frac{dx}{dt} = \frac{d}{dt}(e^t) \cdot (\sin t + \cos t) + e^t \cdot \frac{d}{dt}(\sin t + \cos t) \] Calculating the derivatives: \[ \frac{d}{dt}(e^t) = e^t \] \[ \frac{d}{dt}(\sin t + \cos t) = \cos t - \sin t \] Now substituting back: \[ \frac{dx}{dt} = e^t (\sin t + \cos t) + e^t (\cos t - \sin t) \] Combining like terms: \[ \frac{dx}{dt} = e^t [(\sin t + \cos t) + (\cos t - \sin t)] = e^t [2\cos t] \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we differentiate \(y\): \[ y = e^t (\sin t - \cos t) \] Using the product rule again: \[ \frac{dy}{dt} = \frac{d}{dt}(e^t) \cdot (\sin t - \cos t) + e^t \cdot \frac{d}{dt}(\sin t - \cos t) \] Calculating the derivatives: \[ \frac{d}{dt}(\sin t - \cos t) = \cos t + \sin t \] Now substituting back: \[ \frac{dy}{dt} = e^t (\sin t - \cos t) + e^t (\cos t + \sin t) \] Combining like terms: \[ \frac{dy}{dt} = e^t [(\sin t - \cos t) + (\cos t + \sin t)] = e^t [2\sin t] \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{e^t (2\sin t)}{e^t (2\cos t)} \] The \(e^t\) terms cancel out: \[ \frac{dy}{dx} = \frac{2\sin t}{2\cos t} = \frac{\sin t}{\cos t} = \tan t \] ### Final Answer \[ \frac{dy}{dx} = \tan t \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5k|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5i|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=ae^(t)(sin t+cos t) and y=ae^(t)(sin t-cos t),quad prove that (dy)/(dx)=(x+y)/(x-y)

x=a cos t, y=b sin t

x = a (cos t + sin t), y = a (sin t-cos t)

If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?

x = "sin" t, y = "cos" 2t

If x=a ( tcos t- sin t ) ,y =a ( tsin t +cos t ),then (dy)/(dx) =