Home
Class 12
MATHS
If x=a(t-sint), y=a(1-cost) then find (...

If `x=a(t-sint), y=a(1-cost)` then find `(d^2y)/(dx^2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) given the parametric equations \(x = a(t - \sin t)\) and \(y = a(1 - \cos t)\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) 1. Differentiate \(x\): \[ \frac{dx}{dt} = a\left(1 - \cos t\right) \] 2. Differentiate \(y\): \[ \frac{dy}{dt} = a\sin t \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a\sin t}{a(1 - \cos t)} = \frac{\sin t}{1 - \cos t} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) with respect to \(t\) Now we need to differentiate \(\frac{dy}{dx}\) with respect to \(t\): \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{\sin t}{1 - \cos t}\right) \] Using the quotient rule: \[ \frac{d}{dt}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] where \(u = \sin t\) and \(v = 1 - \cos t\). Calculating \(du/dt\) and \(dv/dt\): - \(du/dt = \cos t\) - \(dv/dt = \sin t\) Now substituting into the quotient rule: \[ \frac{d}{dt}\left(\frac{\sin t}{1 - \cos t}\right) = \frac{(1 - \cos t)(\cos t) - (\sin t)(\sin t)}{(1 - \cos t)^2} \] Simplifying the numerator: \[ = \frac{\cos t - \cos^2 t - \sin^2 t}{(1 - \cos t)^2} = \frac{\cos t - 1}{(1 - \cos t)^2} \] ### Step 4: Find \(\frac{d^2y}{dx^2}\) Using the chain rule again, we have: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] We already calculated \(\frac{d}{dt}\left(\frac{dy}{dx}\right)\). Now we need \(\frac{dt}{dx}\): \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{a(1 - \cos t)} \] Thus, \[ \frac{d^2y}{dx^2} = \left(\frac{\cos t - 1}{(1 - \cos t)^2}\right) \cdot \left(\frac{1}{a(1 - \cos t)}\right) \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{\cos t - 1}{a(1 - \cos t)^3} \] ### Final Answer: \[ \frac{d^2y}{dx^2} = \frac{\cos t - 1}{a(1 - \cos t)^3} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5m|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5n|11 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5k|12 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=a(tsint)andy=(1-cost), then find (d^(2)y)/(dx^(2)) .

If x=a(t+sint),y=a(1-cost)," then "(dy)/(dx)=

If x=a(cost+tsint) and y=a(sint- tcost) , find (d^2y)/(dx^2) .

If x=a(cost+tsint) and y=a(sint-tcost) , find (d^(2)y)/(dx^(2)) .

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))

If y=|x-x^(2)|, then find (d^(2)y)/(dx^(2))

If x=a(cost+tsint),y=a(sint-tcost)," then "((dx)/(dt))^(2)+((dy)/(dt))^(2)=

If x=3tan t and y=3sec t then find (d^(2)y)/(dx^(2)) at x=(pi)/(4)( a) 3( b) (1)/(6sqrt(2))(c)1(d)(1)/(6)

If t=(x^(4)+cotx), find (d^(2)y)/(dx^(2)) .

NAGEEN PRAKASHAN-Continuity and Differentiability-Exercies 5l
  1. Find the 2nd derivative if x^3 log x with respect to x.

    Text Solution

    |

  2. If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)).

    Text Solution

    |

  3. Find the 2nd dervative of e^(ax+b) with respect to x.

    Text Solution

    |

  4. If y=x+cotx then prove that sin^2x(d^2y)/(dx^2)-2y2x=0.

    Text Solution

    |

  5. If y=log(sinx) , prove that (d^3y)/(dx^3)=2cosx cos e c^3x .

    Text Solution

    |

  6. If y=Acosn x+Bsinn x ,s howt h a t (d^2y)/(dx^2)+n^2y=0

    Text Solution

    |

  7. (i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=...

    Text Solution

    |

  8. If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2...

    Text Solution

    |

  9. If y=sin(sinx) then prove that (d^2y)/(dx^2)+tanx. (dy)/(dx)+y cos^2...

    Text Solution

    |

  10. IF y=e^(tan^(-1)x) then prove that : (1-x^(2))(d^2y)/(dx^2)+(2x-1)(d...

    Text Solution

    |

  11. If y^3-3ax^2+x^3=0, then prove that (d^2y)/(dx^2)+(2a^2x^2)/(y^5) = 0

    Text Solution

    |

  12. If y=(t a n^(-1)\ x^2) , show that (x^2+1)^2(d^2\ y)/(dx^2)+2x(x^2+1)(...

    Text Solution

    |

  13. If y=e^tanx then prove that: cos^2x(d^2y)/(dx^2)-(1+sin2x)(dy)/dx=0

    Text Solution

    |

  14. If y=A e^(-k t)cos(p t+c), then prove that (d^2y)/(dt^2)+2k(dy)/(dx)+n...

    Text Solution

    |

  15. If x=at^2,y=2 at then find (d^2y)/(dx^2).

    Text Solution

    |

  16. If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2).

    Text Solution

    |

  17. If x=sint" and "y=sin mt" then prove that "sqrt(1-x^2)(d^2y)/(dx^2)-xd...

    Text Solution

    |

  18. If y=(sin^(-1)x)^2+(cos^(-1)x)^2, then prove that (1-x^2)y2-xy(1)-4=0.

    Text Solution

    |