Home
Class 12
MATHS
= e^(x ^(3))...

` = e^(x ^(3))`

Text Solution

AI Generated Solution

To differentiate the function \( y = e^{x^3} \), we will follow the steps of differentiation using the chain rule. ### Step-by-Step Solution: 1. **Identify the function**: We have the function \( y = e^{x^3} \). 2. **Apply the chain rule**: The chain rule states that if you have a composite function \( y = e^{u} \) where \( u = x^3 \), then the derivative \( \frac{dy}{dx} \) is given by: \[ ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.6|11 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.3|15 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

e^(2x+3)

(1)/(e^(3x)+e^(-3x))

(dy)/(dx) =y ((e^(3x)-e^(-3x))/(e^(3x) +e^(-3x)))

int(dx)/(e^(3x)+e^(-3x))=

Evaluate the limits,if exist lim_(x rarr3)(e^(x)-e^(3))/(x-3)

y = e ^ (2x) + e ^ (3x)

If y=e^(x).e^(2x).e^(3x)…..e^(nx) , then (dy)/(dx) =

In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is