Home
Class 12
MATHS
If x=a(theta-sintheta) , y=a(1+costheta)...

If `x=a(theta-sintheta)` , `y=a(1+costheta)` find `(d^2y)/(dx^2)`

Text Solution

Verified by Experts

`x=a (theta-"sin" theta)`
`rArr (dx)/(d theta) = a (1-"cos" theta) = 2a " sin"^(2)(theta)/(2)`
`y = a(1 + "cos" theta)`
`rArr (dy)/(d theta) = -a"sin" theta = -2a"sin" (theta)/(2) "cos" (theta)/(2)`
`therefore (dy)/(dx) = (dy//d theta)/(dx//d theta) = -(2a"sin"(theta)/(2)"cos" (theta)/(2))/(2a"sin"^(2)(theta)/(2)) = -"cot"(theta)/(2)`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.7|17 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=a(theta-sin theta),y=a(1+cos theta) find (d^(2)y)/(dx^(2))

If x=a(theta-sin theta),y=a(1+cos theta),quad find (d^(2)y)/(dx^(2))

If x=a (theta-sin theta) and y=a(1-cos theta) , find (d^(2)y)/(dx^(2)) at theta=pi.

If x=a(theta+sintheta) and y=a(1-costheta) , find dy//dx .

If y=a(theta+sintheta),x=a(1-costheta)," then "(dy)/(dx)=

if x = a(theta-sintheta), y=(1+costheta) , then (dy)/(dx) is equal to

If x=a(theta+sin theta),y=a(1+cos theta), prove that (d^(2)y)/(dx^(2))=-(a)/(y^(2))

If x=theta-sintheta" and "y=1-costheta," then "(d^(2)y)/(dx^(2))=