Home
Class 12
MATHS
If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(c...

If `x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t)` show that `dy/dx =0 at t=pi/6`

Text Solution

Verified by Experts

`x = ("sin"^(3)t)/(sqrt("cos" 2t))`
`rArr (dx)/(dt) = (sqrt("cos"2t) * (d)/(dt)"sin"^(3)t - "sin"^(3)t(d)/(dt) sqrt("cos"2t))/(sqrt("cos" 2t))^(2)`
`= (sqrt("cos"2t) * 3"sin"^(2)t "cos"t - "sin"^(3)t * ((-2"sin"2t)/(2sqrt("cos"2t))))/("cos" 2t)`
`= ("cos"2t * 3"sin"^(2)t "cos"t + "sin"^(3)t "sin"2t)/("cos" 2tsqrt("cos"2t))`
`= ("sin"^(2)t[3 "cos"t " cos"2t + "sin"t " sin"2t])/("cos" 2tsqrt("cos"2t))`
`= ("sin"^(2)t[3 "cos"t (1-2"sin"^(2)t) + "sin"t * 2"sin"t " cos"t])/("cos" 2tsqrt("cos"2t))`
`= ("sin"^(2)t "cos" t(3-4 "sin"^(2)t))/("cos" 2tsqrt("cos"2t))`
`" and "y = ("cos"^(2)t)/(sqrt("cos"2t))`
`rArr(dy)/(dt) = (sqrt("cos"2t)(d)/(dt)"cos"^(3)t-"cos"^(3)t(d)/(dt)sqrt("cos"2t))/((sqrt("cos"2t))^(2)`
`= (sqrt("cos"2t) * 3"cos"^(2) t (-"sin"t)-"cos"^(3)t * ((-2"sin"2t))/(2sqrt("cos"2t)))/("cos" 2t)`
`=-((3"cos"^(2) t "sin"t * "cos" 2t - "sin" 2t "cos"^(3) t))/("cos" 2tsqrt("cos"2t))`
`=-("cos"^(2)t[3"sin"t(2 "cos"^(2)t-1)-2 "sin" t "cos"t * "cos"t])/("cos" 2t sqrt("cos"2t))`
`=-("cos"^(2)t"sin"t(4"cos"^(2)t-3))/("cos" 2t sqrt("cos"2t))`
`Now (dy)/(dx) = (dy//dt)/(dx//dt) = -("cos"^(2)t"sin"t(4"cos"^(2)t-3))/("sin"^(2)t"cos"t(3-4"sin"^(2)t))`
`=- ("cos"t(4"cos"^(2)t-3))/("sin"t(3-4"sin"^(2)t))`
`=- ((4"cos"^(3)t-3"cos"t))/((3"sin"t-4"sin"^(3)t))`
`=-("cos"3t)/("sin"3t) = -"cos" 3t`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.7|17 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t)) show that (dy)/(dx)=0att=(pi)/(6)

If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t) , then show that ((dy)/(dx))_(t=pi//4) = (b)/(a) .

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), show that at (pi)/(4),(dy)/(dx)=(b)/(a)

Find (dy)/(dx) if x=asqrt(cos2t) cost and y=asqrt(cos2t) sint then, find ((dy)/(dx)|)_(t=pi//6)

x=sqrt(sin 2t),y=sqrt(cos 2 t)

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

If x=a^(sqrt(sin-1)t) and y=a^(sqrt(cos-1)t), then show that (dy)/(dx)=-(y)/(x)

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)

If x = a sin 2t(1 + cos 2t) and y = b cos 2 t(1 – cos 2 t), show that ((d y)/(d x))_(at t =pi/4)=b/a.

If x=sqrt(a^sin^((-1)t)) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x .