Home
Class 12
MATHS
If x = sqrt(a^(sin^(-1)t)) , y = sqrt(a...

If `x = sqrt(a^(sin^(-1)t)) , y = sqrt(a^(cos^(-1)t)` then show that,`dy/dx=-y/x.`

Text Solution

Verified by Experts

`x = sqrt(a^("sin"^(-1)t))`
`(dx)/(dt) = (1)/(2sqrt(a^("sin"^(-1)t))) * a^("sin"^(-1)t) * "log"a * (1)/(1-t^(2))`
`= (1)/(2)sqrt(a^("sin"^(-1)t)) * "log"a * (1)/(sqrt(1-t^(2)))`
`= (x)/(2) * "log"a * (1)/(sqrt(1-t^(2)))`
`"Now " y= sqrt(a^("cos"^(-1)t))`
`rArr (dy)/(dt) = (1)/(2sqrt(a^("cos"^(-1)t))) * a^("cos"^(-1)t) * "log"a * ((1))/sqrt(1-t^(2))`
`= (-1)/(2) * sqrt(a^("cos"^(-1)t)) * "log"a * (1)/sqrt(1-t^(2))`
`= (-y)/(2) * "log"a * (1)/sqrt(1-t^(2))`
`therefore (dy)/(dx) = (dy//dt)/(dx//dt) = ((-y)/(2) "log" a * (1)/(sqrt(1-t^(2))))/((x)/(2)"log"a * (1)/(sqrt(1-t^(2)))) = (-y)/(x)`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.7|17 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(a^sin^((-1)t)) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x .

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos^(-1)t)) show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t)a>0 and -1

If x=a^(sqrt(sin-1)t) and y=a^(sqrt(cos-1)t), then show that (dy)/(dx)=-(y)/(x)

If x=a^(sin^(-1))t,y=a^(cos^(-1))t, show that (dy)/(dx)=-(y)/(x)

If quad sqrt(a^(sin^(-1))t),y=sqrt(a^(cos-1)t),a>0 and |t|<1 then prove that (d^(2)y)/(dx^(2))=(2y)/(x^(2))

For t in (0,1), let x= sqrt( 2 ^(sin^(-1)(t))) and y=sqrt(2 ^(cos-1)t), then 1+ ((dy)/(dx))^(2) equals :

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If x=sqrt(2^(cosec^(-1_t))) and y=sqrt(2^(sec^(-1_t))) (|t|ge1) then (dy)/(dx) is equal to.